Latest Scientific Publications

Z.J. Zhang, X.Z. Wang, H. Wang, E. Huang, J.L. Sheng, L.Q. Zhou, W.Z. Jin. 2020. Housefly Larvae (Musca domestica) Vermicompost on Soil Biochemical Features for a Chrysanthemum (Chrysanthemum morifolium) Farmhttps://doi.org/10.1080/00103624.2020.1763389 

N. de Jonge, T.Y. Michaelsen, R. Ejbye-Ernst, A. Jensen, M.E. NielsenS. BahrndorffJ.L. Nielsen2020. Housefly (Musca domestica L.) associated microbiota across different life stages. https://doi.org/10.1038/s41598-020-64704-y 

Y.L. Yao, F.X. Zhu, C.L. Hong, H.J. Chen, W.P. Wang, Z.Y. Xue, W.J. Zhu, G.L. Wang, W.B. Tong. 2020. Utilization of gibberellin fermentation residues with swine manure by two-step composting mediated by housefly maggot bioconversionhttps://doi.org/10.1016/j.wasman.2020.02.024

X.X. Xu, H. Ji, I. Belghit, J. Sun. 2020. Black soldier fly larvae as a better lipid source than yellow mealworm or silkworm oils for juvenile mirror carp (Cyprinus carpio var. specularis)https://doi.org/10.1016/j.aquaculture.2020.735453

M.K. Awasthi, T. Liu, S.K. Awasthi, Y.M. DuanA. Pandey, Z.Q. Zhang. 2020. Manure pretreatments with black soldier fly Hermetia illucens L. (DipteraStratiomyidae): A study to reduce pathogen contenthttps://doi.org/10.1016/j.scitotenv.2020.139842

I. SwinscoeD.M. Oliver, R. OrnsrudR.S. Quilliam. 2020. The microbial safety of seaweed as a feed component for black soldier fly ( Hermetia illucens ) larvaehttps://doi.org/10.1016/j.fm.2020.103535 

C.C. Liu, H.Y. Yao, S.J. Chapman, J.Q. SuC.W. Wang. 2020. Changes in gut bacterial communities and the incidence of antibiotic resistance genes during degradation of antibiotics by black soldier fly larvaehttps://doi.org/10.1016/j.envint.2020.105834 

C. Lalander, E. Ermolaev, V. Wiklicky, B. Vinneras2020. Process efficiency and ventilation requirement in black soldier fly larvae composting of substrates with high water content. https://doi.org/10.1016/j.scitotenv.2020.138968 

A. Schlageter-Tello, G.C. Fahey, T. FreelL. KoutsosP.S. Miller, W.P. Weiss. 2020. ASAS-NANP Symposium: Ruminant/Nonruminant Feed Composition: Challenges and opportunities associated with creating large feed ingredient composition tables. https://doi.org/10.1093/jas/skaa240 

D. Bruno, T. Bonacci, M. ReguzzoniM. CasartelliA. Grimaldi, G. TettamantiP. Brandmayr. 2020. An in-depth description of head morphology and mouthparts in larvae of the black soldier fly Hermetia illucens. https://doi.org/10.1016/j.asd.2020.100969

M. ElsayedY. Ran, P. Ai, M. AzabA. Mansour, K.D. JinY.L. Zhang, A. Abomohra. 2020. Innovative integrated approach of biofuel production from agricultural wastes by anaerobic digestion and black soldier fly larvaehttps://doi.org/10.1016/j.jclepro.2020.121495 

S. DabbouI. FerrocinoL. Gasco, A. Schiavone, A. Trocino, G. XiccatoA.C. BarroetaS. MaioneD. SogliaI. BiasatoL. CocolinF. Gai, D.M. Nucera. 2020. Antimicrobial Effects of Black Soldier Fly and Yellow Mealworm Fats and Their Impact on Gut Microbiota of Growing Rabbits. https://doi.org/10.3390/ani10081292 

W.C. Pang, D.J. Hou, E.E. NowarH.C. Chen, J.B. Zhang, G.P. Zhang, Q. Li, S.C. Wang. 2020. The influence on carbon, nitrogen recycling, and greenhouse gas emissions under different C/N ratios by black soldier flyhttps://doi.org/10.1007/s11356-020-09909-4 

C.D. Miranda, J.A. CammackJ.K. Tomberlin. 2020. Mass Production of the Black Soldier Fly, Hermetia illucens (L.), (DipteraStratiomyidae) Reared on Three Manure Types. https://doi.org/10.3390/ani10071243 

S. BortoliniL.I. MacaveiJ.H. SaadounG. FocaA. UlriciF. Bernini, D. MalferrariL. SettiD. RongaL. Maistrello. 2020. Hermetia illucens (L.) larvae as chicken manure management tool for circular economyhttps://doi.org/10.1016/j.jclepro.2020.121289

B. Hoc, M. GenvaM.L. FauconnierG. LognayF. Francis, R.C. Megido. 2020. About lipid metabolism in Hermetia illucens (L. 1758): on the origin of fatty acids in prepupaehttps://doi.org/10.1038/s41598-020-68784-8 

S. Lee, M.A.K. Chowdhury, R.W. Hardy, B.C. Small. 2020. Apparent digestibility of protein, amino acids and gross energy in rainbow trout fed various feed ingredients with or without proteasehttps://doi.org/10.1016/j.aquaculture.2020.735270 

F.M. Khamis, F.L.O. OmburaK.S. AkutseS. Subramanian, S.A. Mohamed, K.K.M. FiaboeW. SaijunthaJ.J.A. Van Loon, M. Dicke, T. Dubois, S. EkesiC.M. Tanga. 2020. Insights in the Global Genetics and Gut Microbiome of Black Soldier Fly, Hermetia illucens: Implications for Animal Feed Safety Controlhttps://doi.org/10.3389/fmicb.2020.01538 

Y. Cifuentes, S.P. GlaeserJ. MvieJ.O. BartzA. Muller, H.O. GutzeitA. VilcinskasP. Kampfer. 2020. The gut and feed residue microbiota changing during the rearing of Hermetia illucens larvaehttps://doi.org/10.1007/s10482-020-01443-0 

S.Y. Chia, C.M. Tanga, I.M. OsugaX. ChesetoS. EkesiM. Dicke, J.J.A. van Loon. 2020. Nutritional composition of black soldier fly larvae feeding on agro-industrial by-productshttps://doi.org/10.1111/eea.12940

J.S. Matos, A.T.M.S. BarberinoL.P. de Araujo, I.P. Lobo, J.A.D. Neto. 2020. Potentials and Limitations of the Bioconversion of Animal Manure Using Fly Larvaehttps://doi.org/10.1007/s12649-020-01141-y 

M. BonelliD. Bruno, M. BrilliN. GianfranceschiL. Tian, G. TettamantiS. Caccia, M. Casartelli. 2020. Black Soldier Fly Larvae Adapt to Different Food Substrates through Morphological and Functional Responses of the Midguthttps://doi.org/10.3390/ijms21144955

H.K. Ravi, A. DegrouJ.M. CostilC. TrespeuchF. ChematM.A. Vian. 2020. Larvae Mediated Valorization of Industrial, Agriculture and Food Wastes: Biorefinery Concept through Bioconversion, Processes, Procedures, and Productshttps://doi.org/10.3390/pr8070857

M. Crosbie, C. Zhu, A.K. ShovellerL.A. Huber. 2020. Standardized ileal digestible amino acids and net energy contents in full fat and defatted black soldier fly larvae meals (Hermetia illucens) fed to growing pigs. https://doi.org/10.1093/tas/txaa104

M. Gold, J. Egger, A. Scheidegger, C. Zurbrugg, D. Bruno, M. Bonelli, G. Tettamanti, M. Casartelli, E. Schmitt, B. Kerkaert, J. De Smet, L. Van Campenhout, A. Mathys. 2020. Estimating black soldier fly larvae biowaste conversion performance by simulation of midgut digestionhttps://doi.org/10.1016/j.wasman.2020.05.026 

Y.J. Hu, Y.H. Huang, T. Tang, L. Zhong, W.Y. Chu, Z.Y. Dai, K.J. Chen, Y. Hu. 2020. Effect of partial black soldier fly (Hermetia illucens L.) larvae meal replacement of fish meal in practical diets on the growth, digestive enzyme and related gene expression for rice field eel (Monopterus albus)https://doi.org/10.1016/j.aqrep.2020.100345 

M. Yildirim-Aksoy, R. EljackC. SchrimsherB.H. Beck. 2020. Use of dietary frass from black soldier fly larvae, Hermetia illucens, in hybrid tilapia (Nile x Mozambique, Oreocromis niloticus x O. mozambique ) diets improves growth and resistance to bacterial diseaseshttps://doi.org/10.1016/j.aqrep.2020.100373 

M. ZarantonielloB. Randazzo, G. GioacchiniC. TruzziE. GiorginiP. RioloG. GioiaC. Bertolucci, A. OsimaniG. CardinalettiT. Lucon-XiccatoV. MilanoviA. AnnibaldiF. TulliV. NotarstefanoS. RuschioniF. Clementi, I. Olivotto. 2020. Zebrafish (Danio rerio) physiological and behavioural responses to insect-based diets: a multidisciplinary approachhttps://doi.org/10.1038/s41598-020-67740-w 

M. Gold, M. Binggeli, F. Kurt, T. de Wouters, M. Reichlin, C. Zurbrugg, A. Mathys, M. Kreuzer2020. Novel Experimental Methods for the Investigation of Hermetia illucens (DipteraStratiomyidae) Larvaehttps://doi.org/10.1093/jisesa/ieaa057 

D. Azzollini, A. van Iwaarden, C.M.M. Lakemond, V. Fogliano2020. Mechanical and Enzyme Assisted Fractionation Process for a Sustainable Production of Black Soldier Fly (Hermetia illucens) Ingredientshttps://doi.org/10.3389/fsufs.2020.00080 

B.M. Jones, J.K. Tomberlin. 2020. Validation of Acrylic Paint as a Marking Technique for Examining Mating Success of the Black Soldier Fly DipteraStratiomyidae). https://doi.org/10.1093/jee/toaa129

Q.Y. Xu, Z.Z. Wu, X.N. Zeng, X.C. An. 2020. Identification and Expression Profiling of Chemosensory Genes in Hermetia illucens via a Transcriptomic Analysishttps://doi.org/10.3389/fphys.2020.00720 

L. FrancuskiL.W. Beukeboom. 2020. Insects in production – an introductionhttps://doi.org/10.1111/eea.12935 

A. Parodi, K. Van Dijk, J.J.A. Van Loon, I.J.M. De Boer, J. Van Schelt, H.H.E. Van Zanten2020. Black soldier fly larvae show a stronger preference for manure than for a mass-rearing diethttps://doi.org/10.1111/jen.12768

C. Rhode, R. Badenhorst, K.L. Hull, M.P. Greenwood, A.E. Bester-van der Merwe, A.A. Andere, C.J. C. Richards2020. Genetic and phenotypic consequences of early domestication in black soldier flies (Hermetia illucens)https://doi.org/10.1111/age.12961 

L. Joosten, A. Lecocq, A.B. Jensen, O. Haenen, E. SchmittJ. Eilenberg2020. Review of insect pathogen risks for the black soldier fly (Hermetia illucens) and guidelines for reliable productionhttps://doi.org/10.1111/eea.12916 

K.Y. Barragan-Fonseca, K.B. Barragan-Fonseca, G. Verschoor, J.J.A. van Loon, M. Dicke. 2020. Insects for peace. https://doi.org/10.1016/j.cois.2020.05.011 

A. Mouithys-MickaladE. Schmitt, M. Dalim, T. Franck, N.M. Tome, M. van SpankerenD. SerteynA. Paul. 2020. Black Soldier Fly (Hermetia illucens) Larvae Protein Derivatives: Potential to Promote Animal Healthhttps://doi.org/10.3390/ani10060941 

M. Shelomi. 2020. Potential of Black Soldier Fly Production for Pacific Small Island Developing Stateshttps://doi.org/10.3390/ani10061038 

S. Raimondi, G. Spampinato, L.I. MacaveiL. LugliF. CandeliereM. Rossi, L. MaistrelloA. Amaretti. 2020. Effect of Rearing Temperature on Growth and Microbiota Composition of Hermetia illucenshttps://doi.org/10.3390/microorganisms8060902 

G. TerovaC. CeccottiC. AscioneL. Gasco, S. Rimoldi. 2020. Effects of Partially Defatted Hermetia illucens Meal in Rainbow Trout Diet on Hepatic Methionine Metabolismhttps://doi.org/10.3390/ani10061059 

K. Kawasaki, T. Kawasaki, H. HirayasuY. Matsumoto, Y. Fujitani. 2020. Evaluation of Fertilizer Value of Residues Obtained after Processing Household Organic Waste with Black Soldier Fly Larvae (Hermetia illucens)https://doi.org/10.3390/su12124920

L.A. CadinuP. Barra, F. Torre, F. DeloguF.A. Madau. 2020. Insect Rearing: Potential, Challenges, and Circularityhttps://doi.org/10.3390/su12114567

M. Yu, Z.M. Li, W.D. Chen, T. Rong, G. Wang, F.Y. Wang, X.Y. Ma. 2020. Evaluation of full-fat Hermetia illucens larvae meal as a fishmeal replacement for weanling piglets: Effects on the growth performance, apparent nutrient digestibility, blood parameters and gut morphologyhttps://doi.org/10.1016/j.anifeedsci.2020.114431 

H.J. Fisher, S.A. Collins, C. Hanson, B. Mason, S.M. Colombo, D.M. Anderson. 2020. Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar)https://doi.org/10.1016/j.aquaculture.2020.734978 

N.A. UshakovaS.V. Ponomarev, Y.V. FedorovyhA.I. BastrakovD.S. Pavlov. 2020. Physiological Basis of the Nutritional Value of a Concentrate of Hermetia illucens Larvae in Fish Dietshttps://doi.org/10.1134/S1062359020030103

S. HasnolK. KiatkittipongW. KiatkittipongC.Y. Wong, C.S. KheM.K. Lam, P.L. Show, W.D. Oh, T.L. Chew, J.W. Lim. 2020. A Review on Insights for Green Production of Unconventional Protein and Energy Sources Derived from the Larval Biomass of Black Soldier Flyhttps://doi.org/10.3390/pr8050523

K. Motoki, S. Ishikawa, C. Spence, C. Velasco. 2020. Contextual acceptance of insect-based foodshttps://doi.og/10.1016/j.foodqual.2020.103982

J.M. VandenBrooksC.F. Ford, J.F. Harrison. 2020. Responses to Alteration of Atmospheric Oxygen and Social Environment Suggest Trade-Offs among Growth Rate, Life Span, and Stress Susceptibility in Giant Mealworms (Zophobas morio). https://doi.org/10.1086/710726

R.A. Wu, Q.Z. Ding, L.T. Yin, X.W. Chi, N.Z. Sun, R.H. He, L. Luo, H.L. Ma, Z.K. Li. 2020. Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor): Amino acid, fatty acid, and element profileshttps://doi.org/10.1016/j.foodchem.2020.126818

C. GarinoH. Mielke, S. KnuppelT. Selhorst, H. BrollA. Braeuning. 2020. Quantitative allergenicity risk assessment of food products containing yellow mealworm (Tenebrio molitor)https://doi.org/10.1016/j.fct.2020.111460

M.L.J. Wessels, D. Azzollini, V. Fogliano2020. Frozen storage of lesser mealworm larvae (Alphitobius diaperinus) changes chemical properties and functionalities of the derived ingredients. https://doi.org/10.1016/j.foodchem.2020.126649

L. BelleggiaV. Milanovic, F. CardinaliC. Garofalo, M. PasquiniS. TavolettiP. RioloS. RuschioniN. IsidoroF. Clementi, A. NtoumosL. AquilantiA. Osimani. 2020. Listeria dynamics in a laboratory-scale food chain of mealworm larvae (Tenebrio molitor) intended for human consumptionhttps://doi.org/10.1016/j.foodcont.2020.107246 

L. Kim, S. BaekK. Son, E. Kim, H.H. Noh, D. Kim, M.S. Oh, B.C. Moon, J.H. Ro. 2020. Optimization of a Simplified and Effective Analytical Method of Pesticide Residues in Mealworms (Tenebrio molitor Larvae) Combined with GC-MS/MS and LC-MS/MS. https://doi.org/10.3390/molecules25153518 

L. Yang, J. Gao, Y. Liu, G. Zhuang, X. Peng, W.M. Wu, X. Zhuang. 2020. Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. https://doi.org/10.1016/j.chemosphere.2020.127818

X. Han, M. Heinonen. 2020. Development of ultra-high performance liquid chromatographic and fluorescent method for the analysis of insect chitin. https://doi.org/10.1016/j.foodchem.2020.127577 

A. Borremans, S. Bussler, S.T. Sagu, H. Rawel, O.K. Schluter, L. Van Campenhout. 2020. Effect of Blanching Plus Fermentation on Selected Functional Properties of Mealworm (Tenebrio molitor) Powders. https://doi.org/10.3390/foods9070917 

C.I. RumbosI.T. KarapanagiotidisE. MenteP. PsofakisC.G. Athanassiou. 2020. Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitorhttps://doi.org/10.1038/s41598-020-67363-1 

H.R. Cho, S.O. Lee. 2020. Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor)https://doi.org/10.1016/j.foodres.2020.109194 

S. RodjaroenK. ThongprajukaewP. KhongmuangS. MalawaK. TuntikawinwongS. Saekhow. 2020. Ontogenic Development of Digestive Enzymes in Mealworm Larvae (Tenebrio molitor) and Their Suitable Harvesting Time for Use as Fish Feedhttps://doi.org/10.3390/insects11060393 

A. BoukilV. Perreault, J. Chamberland, S. MezdourY. PouliotA. Doyen. 2020. High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis Affect Mealworm Allergenic Proteinshttps://doi.org/10.3390/molecules25112685 

Y. Song, H. Gu, J.M. Jo, M. Shin, S.Y. Kim, D. Gam, S. Imamura, J.W. Kim. 2020. Production of Functional Peptide with Anti-obesity Effect from Defatted Tenebrio molitor Larvae Using Proteolytic Enzymehttps://doi.org/10.1007/s12257-019-0329-6 

A. BordieanM. Krzyzaniak, M.J. StolarskiS. CzachorowskiD. Peni. 2020. Will Yellow Mealworm Become a Source of Safe Proteins for Europe? https://doi.org/10.3390/agriculture10060233 

Z. MikolajczakM. Rawski, J. MazurkiewiczB. KieronczykD. Jozefiak. 2020. The Effect of Hydrolyzed Insect Meals in Sea Trout Fingerling (Salmo truttam.trutta) Diets on Growth Performance, Microbiota and Biochemical Blood Parametershttps://doi.org/10.3390/ani10061031 

K. WendinL. MartenssonH. DjerfM. Langton. 2020. Product Quality during the Storage of Foods with Insects as an Ingredient: Impact of Particle Size, Antioxidant, Oil Content and Salt Contenthttps://doi.org/10.3390/foods9060791 

S.K. Kar, B. van der Hee, L.M.P. Loonen, N. Taverne, J.J. Taverne-Thiele, D. Schokker, M.A. Smits, A.J.M. Jansman, J.M. Wells2020. Effects of undigested protein-rich ingredients on polarised small intestinal organoid monolayershttps://doi.org/10.1186/s40104-020-00443-4 

O.D. Okagu, O. Verma, D.J. McClements, C.C. Udenigwe2020. Utilization of insect proteins to formulate nutraceutical delivery systems: Encapsulation and release of curcumin using mealworm protein-chitosan nano-complexeshttps://doi.org/10.1016/j.ijbiomac.2020.02.198 

F.R. Pino, R.P. Galvez, F.J.E. Carpio, E.M. Guadix. 2020. Evaluation of Tenebrio molitor protein as a source of peptides for modulating physiological processeshttps://doi.org/10.1039/d0fo00734j 

J.S. Arena, M.T. Defago. 2020. A novel method for sexing live adult Alphitobius diaperinushttps://doi.org/10.1111/eea.12900 

C.I. RumbosI. PantazisC.G. Athanassiou. 2020. Population Growth of Alphitobius diaperinus (Coleoptera: Tenebrionidae) on Various Commoditieshttps://doi.org/10.1093/jee/toz313 

G. Leni, L. SoetemansA. CaligianiS. Sforza, L. Bastiaens. 2020. Degree of Hydrolysis Affects the Techno-Functional Properties of Lesser Mealworm Protein Hydrolysateshttps://doi.org/10.3390/foods9040381 

S.J. PyoD.G. Kang, C. Jung, H.Y. Sohn. 2020. Anti-Thrombotic, Anti-Oxidant and Haemolysis Activities of Six Edible Insect Specieshttps://doi.org/10.3390/foods9040401 

S. Mancini, F. FratiniT. TuccinardiC. Degl’InnocentiG. Paci. 2020. Tenebrio molitor reared on different substrates: is it gluten free? https://doi.org/10.1016/j.foodcont.2019.107014

YYang, J.L. Wang, M.L. Xia. 2020. Biodegradation and mineralization of polystyrene by plastic eating superworms Zophobas atratushttps://doi.org/10.1016/j.scitotenv.2019.135233 

M. Keshavarz, Y.H. Jo, T.T. EdosaY.S. Han. 2020. Two Roles for the Tenebrio molitor Relish in the Regulation of Antimicrobial Peptides and Autophagy-Related Genes in Response to Listeria monocytogeneshttps://doi.org/10.3390/insects11030188 

S. Smetana, L. Leonhardt, S.M. Kauppi, A. PajicV. Heinz. 2020. Insect margarine: Processing, sustainability and designhttps://doi.org/10.1016/j.jclepro.2020.121670 

Ognik,K. Kozlowski, A. StepniowskaP. ListosD. Jozefiak, Z. ZdunczykJ. Jankowski. 2020. Antioxidant Status and Liver Function of Young Turkeys Receiving a Diet with Full-Fat Insect Meal from Hermetia illucenshttps://doi.org/10.3390/ani10081339 

B.K. MintahR.H. He, M. DabbourJ.H. Xiang, H. Jiang, A.A. Agyekum, H.L. Ma. 2020. Characterization of edible soldier fly protein and hydrolysate altered by multiple-frequency ultrasound: Structural, physical, and functional attributeshttps://doi.org/10.1016/j.procbio.2020.05.021

C. Almeida, P. RijoC. Rosado. 2020. Bioactive Compounds from Hermetia Illucens Larvae as Natural Ingredients for Cosmetic Application.  https://doi.org/10.3390/biom10070976 

I. BiasatoI. FerrocinoE. ColombinoF.C. Gai, A. Schiavone, L. CocolinV. VincentiM.T. CapucchioL. Gasco. 2020. Effects of dietary Hermetia illucens meal inclusion on cecal microbiota and small intestinal mucin dynamics and infiltration with immune cells of weaned pigletshttps://doi.org/10.1186/s40104-020-00466-x 

S. MaioloG. ParisiN. Biondi, F. LunelliE. TibaldiR. Pastres. 2020. Fishmeal partial substitution within aquafeed formulations: life cycle assessment of four alternative protein sourceshttps://doi.org/10.1007/s11367-020-01759-z 

D.N. NyangenaC. MutungiS. ImathiuJ. KinyuruH. AffognonS. EkesiD. NakimbugweK.K.M.  Fiaboe. 2020. Effects of Traditional Processing Techniques on the Nutritional and Microbiological Quality of Four Edible Insect Species Used for Food and Feed in East Africahttps://doi.org/10.3390/foods9050574 

W. Czekala, D.Janczak, M. Cieslik, J. Mazurkiewicz, J. Pulka2020. Food Waste Management Using the Hermetia Illucens Insecthttps://doi.org/10.12911/22998993/119977 

M. MastorakiP.M. FerrandizS.C. VardaliD.C. KontodimasY.P. KotzamanisL. Gasco, S. Chatzifotis, E. Antonopoulou. 2020. A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.)https://doi.org/10.1016/j.aquaculture.2020.735511 

A. Bauer, A.M. Bauer, J.K. Tomberlin. 2020. Impact of diet moisture on the development of the forensically important blow fly Cochliomyia macellaria (Fabricius) (DipteraCalliphoridae)https://doi.org/10.1016/j.forsciint.2020.110333

A.Y. Bloukounon-GoubalanA. SaidouC.A.A.M. ChrysostomeM. KenisG.L. AmadjiA.M. IgueG.A.  Mensah. 2020. Physical and Chemical Properties of the Agro-processing By-products Decomposed by Larvae of Musca domestica and Hermetia illucenshttps://doi.org/10.1007/s12649-019-00587-z 

M. IgualP. Garcia-Segovia, J. Martinez-Monzo. 2020. Effect of Acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded productshttps://doi.org/10.1016/j.jfoodeng.2020.110032 

S.M. KiiruJ.N. KinyuruB.N. KiageA. Martin, A.K. MarelR. Osen. 2020. Extrusion texturization of cricket flour and soy protein isolate: Influence of insect content, extrusion temperature, and moisture-level variation on textural propertieshttps://doi.org/10.1002/fsn3.1700 

M. BawaS. SongsermpongC. KaewtapeeW. Chanput. 2020. Nutritional, sensory, and texture quality of bread and cookie enriched with house cricket (Acheta domesticus) powderhttps://doi.org/10.1111/jfpp.14601 

P. Otero, A. Gutierrez-DocioJ.N. del HierroG. RegleroD. Martin. 2020. Extracts from the edible insects Acheta domesticus and Tenebrio molitor with improved fatty acid profile due to ultrasound assisted or pressurized liquid extractionhttps://doi.org/10.1016/j.foodchem.2020.126200 

A. FroehlingS. BusslerJ. DurekO.K. Schluter. 2020. Thermal Impact on the Culturable Microbial Diversity Along the Processing Chain of Flour From Crickets (Acheta domesticus)https://doi.org/10.3389/fmicb.2020.00884