- Insects to Feed the World 2020 Virtual Conference. https://doi.org/10.3920/jiff2020.s1
- J. Casas, T. Corbet, E. Desouhant, D. Giron. 2020. Extend standardised methods and protocols for insect diet composition to insect energy and nutrient budgets. https://doi.org/10.3920/JIFF2020.x005
- T. Eriksson, A.A. Andere, H. Kelstrup, V.J. Emery, C.J. Picard. 2020. The yellow mealworm (Tenebrio molitor) genome: a resource for the emerging insects as food and feed industry. https://doi.org/10.3920/JIFF2019.0057
- E. Dreassi, A. Mancini, G. Corbini, M. Botta, F. Tarchi, V. Francardi. 2020. Bioaccumulation of deltamethrin, tebuconazole and chlormequat chloride in T. molitor larvae and risks associated with their human consumption. https://doi.org/10.3920/JIFF2020.0007
- H.J. van der Fels-Klerx, N. Meijer, M.M. Nijkamp, E. Schmitt, J.J.A. van Loon. 2020. Chemical food safety of using former foodstuffs for rearing black soldier fly larvae (Hermetia illucens) for feed and food use. https://doi.org/10.3920/JIFF2020.0024
- S. Büyükkılıç Beyzi. 2020. Effect of replacement of sunflower seed meal with isonitrogenous Polistes instabilis on in vitro methanogenesis and rumen fermentation. https://doi.org/10.3920/JIFF2020.0044
- Kulma, V. Tůmová, A. Fialová, L. Kouřimská. 2020. Insect consumption in the Czech Republic: what the eye does not see, the heart does not grieve over. https://doi.org/10.3920/JIFF2020.0020
- A. van Huis. 2020. Insect pests as food and feed. https://doi.org/10.3920/JIFF2020.x004
- M. Dicke, J. Eilenberg, J. Falcao Salles, A.B. Jensen, A. Lecocq, G.P. Pijlman, J.J.A. van Loon, M.M. van Oers. 2020. Edible insects unlikely to contribute to transmission of coronavirus SARS-CoV-2. https://doi.org/10.3920/JIFF2020.0039
- Marquis, L. Hénault-Ethier, J. LeBel. 2020. Edible insect marketing in Western countries: wisely weighing the foodstuff, the foodie, and the foodscape. https://doi.org/10.3920/JIFF2018.0037
- Q. Li, Y.-P. Li, D. Ambühl, Y.-Q. Liu, M.-W. Li, L. Qin. 2020. Nutrient composition of Chinese oak silkworm, Antheraea pernyi, a traditional edible insect in China: a review. https://doi.org/10.3920/JIFF2019.0059
- Pippinato, L. Gasco, G. Di Vita, T. Mancuso. 2020. Current scenario in the European edible-insect industry: a preliminary study. https://doi.org/10.3920/JIFF2020.0008
- Zielińska, D. Zieliński, M. Karaś, A. Jakubczyk. 2020. Exploration of consumer acceptance of insects as food in Poland. https://doi.org/10.3920/JIFF2019.0055
- Leni, L. Soetemans, J. Jacobs, S. Depraetere, N. Gianotten, L. Bastiaens, A. Caligiani, S. Sforza. 2020. Protein hydrolysates from Alphitobius diaperinus and Hermetia illucens larvae treated with commercial proteases. https://doi.org/10.3920/JIFF2019.0037
- M. Mishyna, M. Haber, O. Benjamin, J.J. Itzhak Martinez, J. Chen. 2020. Drying methods differentially alter volatile profiles of edible locusts and silkworms. https://doi.org/10.3920/JIFF2019.0046
- Kamau, C. Mutungi, J. Kinyuru, S. Imathiu, H. Affognon, S. Ekesi, D. Nakimbugwe, K.K.M. Fiaboe. 2020. Changes in chemical and microbiological quality of semi-processed black soldier fly (Hermetia illucens L.) larval meal during storage. https://doi.org/10.3920/JIFF2019.0043
- X. Fernandez-Cassi, K. Söderqvist, A. Bakeeva, M. Vaga, J. Dicksved, I. Vagsholm, A. Jansson, S. Boqvist. 2020. Microbial communities and food safety aspects of crickets (Acheta domesticus) reared under controlled conditions. https://doi.org/10.3920/JIFF2019.0048
- A. van Huis, D.G.A.B. Oonincx, S. Rojo, J.K. Tomberlin. 2020. Insects as feed: house fly or black soldier fly? https://doi.org/10.3920/JIFF2020.x003
- H.J. Hunts, F.V. Dunkel, M.J. Thienes, N.B. Carnegie. 2020. Gatekeepers in the food industry: acceptability of edible insects. https://doi.org/10.3920/JIFF2018.0045
- Hénault-Ethier, D. Marquis, M. Dussault, M.-H. Deschamps, G. Vandenberg. 2020. Entomophagy knowledge, behaviours and motivations: the case of French Quebeckers. https://doi.org/10.3920/JIFF2018.0039
- O. Vartiainen, A-L. Elorinne, M. Niva, P. Väisänen. 2020. Finnish consumers’ intentions to consume insect-based foods. https://doi.org/10.3920/JIFF2019.0042
- M.J. Woods, N.J. Goosen, L.C. Hoffman, E. Pieterse. 2020. A simple and rapid protocol for measuring the chitin content of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae. https://doi.org/10.3920/JIFF2019.0030
- E. Bernard, J. Villazana, A. Alyokhin, J. Rose. 2020. Colonisation of finfish substrate inhabited by black soldier fly larvae by blow flies, bacteria, and fungi. https://doi.org/10.3920/JIFF2019.0044
- M. Bejaei, K.M. Cheng. 2020. The effect of including full-fat dried black soldier fly larvae in laying hen diet on egg quality and sensory characteristics. https://doi.org/10.3920/JIFF2019.0045
- R.S. Quilliam, C. Nuku-Adeku, P. Maquart, D. Little, R. Newton, F. Murray. 2020. Integrating insect frass biofertilisers into sustainable peri-urban agro-food systems. https://doi.org/10.3920/JIFF2019.0049
- J.Kinyuru. 2020. Book review: African edible insects as alternative source of food, oil, protein and bioactive components. https://doi.org/10.3920/JIFF2020.x002
- G. Bosch, D.G.A.B. Oonincx, H.R. Jordan, J. Zhang, J.J.A. van Loon, A. van Huis, J.K. Tomberlin. 2020. Standardisation of quantitative resource conversion studies with black soldier fly larvae. https://doi.org/10.3920/JIFF2019.0004
- A. van Huis. 2020. Edible crickets, but which species? https://doi.org/10.3920/JIFF2020.x001
- J.C. Schneider. 2020. Effects of light intensity on mating of the black soldier fly (Hermetia illucens, Diptera: Stratiomyidae). https://doi.org/10.3920/JIFF2019.0003
- G. Montevecchi, L. Zanasi, F. Masino, L. Maistrello, A. Antonelli. 2020. Black soldier fly (Hermetia illucens L.): effect on the fat integrity using different approaches to the killing of the prepupae. https://doi.org/10.3920/JIFF2019.0002
- D. Dzepe, P. Nana, A. Fotso, T. Tchuinkam, R. Djouaka. 2020. Influence of larval density, substrate moisture content and feedstock ratio on life history traits of black soldier fly larvae. https://doi.org/10.3920/JIFF2019.0034
- J. Mellado-Carretero, N. García-Gutiérrez, M. Ferrando, C. Güell, D. García-Gonzalo, S. De Lamo-Castellví. 2020. Rapid discrimination and classification of edible insect powders using ATR-FTIR spectroscopy combined with multivariate analysis. https://doi.org/10.3920/JIFF2019.0032
- T.B.W. Seekings, K.C. Wong. 2020. The proof is in the cricket: engaging with edible insects through action research. https://doi.org/10.3920/JIFF2019.0027
- X.T. Quek, L. Liang, H.H. Tham, H. Yeo, M.K. Tan, H.T.W. Tan. 2020. Are the growth and survival of Acheta domesticus comparable when reared on okara, waste vegetables and premium animal feed? https://doi.org/10.3920/JIFF2019.0039
- S.M. Kiiru, J.N. Kinyuru, B.N. Kiage, A.K. Marel. 2020. Partial substitution of soy protein isolates with cricket flour during extrusion affects firmness and in vitro protein digestibility. https://doi.org/10.3920/JIFF2019.0024
- M. Vaga, Å. Berggren, T. Pauly, A. Jansson. 2020. Effect of red clover-only diets on house crickets (Acheta domesticus) growth and survival. https://doi.org/10.3920/JIFF2019.0038
- E. Thorsson, A. Jansson, M. Vaga, L. Holm. 2020. Histochemical localisation of carbonic anhydrase in the digestive tract and salivary glands of the house cricket, Acheta domesticus. https://doi.org/10.3920/JIFF2019.0033
- J. Ng’ang’a, S. Imathiu, F. Fombong, A. Borremans, L. Van Campenhout, J. Vanden Broeck, J. Kinyuru. 2020. Can farm weeds improve the growth and microbiological quality of crickets (Gryllus bimaculatus)? https://doi.org/10.3920/JIFF2019.0051
- M. Reverberi. 2020. Edible insects: cricket farming and processing as an emerging market. https://doi.org/10.3920/JIFF2019.0052
- J.K. Tomberlin, A. van Huis. 2020. Black soldier fly from pest to ‘crown jewel’ of the insects as feed industry: an historical perspective. https://doi.org/10.3920/JIFF2020.0003
- J.B. Zhang, J.K. Tomberlin, M.M. Cai, X.P. Xiao, L.Y. Zheng, Z.N. Yu. 2020. Research and industrialisation of Hermetia illucens L. in China. https://doi.org/10.3920/JIFF2019.0020
- Y. Feng, M. Zhao, W.F. Ding, X.M. Chen. 2020. Overview of edible insect resources and common species utilisation in China. https://doi.org/10.3920/JIFF2019.0022
- A. van Huis. 2020. Insects as food and feed, a new emerging agricultural sector: a review. https://doi.org/10.3920/JIFF2019.0017
- K. Nonaka, H. Yanagihara. 2020. Reviving the consumption of insects in Japan: a promising case of hebo (Vespula spp., wasps) by high school club activities. https://doi.org/10.3920/JIFF2019.0005
- J.N. Kinyuru, N.W. Ndung’u. 2020. Promoting edible insects in Kenya: historical, present and future perspectives towards establishment of a sustainable value chain. https://doi.org/10.3920/JIFF2019.0016
- K.W.P. Aarts. 2020. How to develop insect-based ingredients for feed and food? A company’s perspective. https://doi.org/10.3920/JIFF2018.x008
- S. Cox, C. Payne, A. Badolo, R. Attenborough, C. Milbank. 2020. The nutritional role of insects as food: a case study of ‘chitoumou’ (Cirina butyrospermi), an edible caterpillar in rural Burkina Faso. https://doi.org/10.3920/JIFF2018.0030
- C.D. Miranda, J.A. Cammack, J.K. Tomberlin. 2020. Life-history traits of house fly, Musca domestica L. (Diptera: Muscidae), reared on three manure types. https://doi.org/10.3920/JIFF2019.0001
- Y.L. Jiang, Y.F. Zhu, Y.R. Zheng, Z.M. Liu, Y. Zhong, Y. Deng, Y.Y. Zhao. 2021. Effects of salting-in/out-assisted extractions on structural, physicochemical and functional properties of Tenebrio molitor larvae protein isolates. https://doi.org/10.1016/j.foodchem.2020.128158
- K. Hua. 2021. A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. https://doi.org/10.1016/j.aquaculture.2020.735732
- P. Weththasinghe, J.O. Hansen, D. Nokland, L. Lagos, M. Rawski, M (Rawski, M. Overland. 2021.Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. https://doi.org/10.1016/j.aquaculture.2020.735785
- M.A. El-Dakar, R.R. Ramzy, M. Plath, H. Ji. 2021. Evaluating the impact of bird manure vs. mammal manure on Hermetia illucens larvae. https://doi.org/10.1016/j.jclepro.2020.123570
- Mahmood, A.B. Tabinda, A. Ali, C. Zurbrugg. 2021. Reducing the Space Footprint of Black Soldier Fly Larvae Waste Treatment by Increasing Waste Feeding Layer Thickness. https://doi.org/10.15244/pjoes/122618
- C. Possidonio, M. Prada, J. Graca, J. Piazza. 2021. Consumer perceptions of conventional and alternative protein sources: A mixed-methods approach with meal and product framing. https://doi.org/10.1016/j.appet.2020.104860
- D. Beesigamukama, B. Mochoge, N.K. Korir, K.M. Fiaboe, D. Nakimbugwe, F.M. Khamis, S. Subramanian, M.M. Wangu, T. Dubois, S. Ekesi, C.M. Tanga. 2021. Low-cost technology for recycling agro-industrial waste into nutrient-rich organic fertilizer using black soldier fly. https://doi.org/10.1016/j.wasman.2020.09.043
- Q. Wang, X.N. Ren, Y. Sun, J.C. Zhao, M.K. Awasthi, T. Liu, R.H. Li, Z.Q. Zhang. 2021. Improvement of the composition and humification of different animal manures by black soldier fly bioconversion. https://doi.org/10.1016/j.jclepro.2020.123397
- H. Guo, C. Jiang, Z. Zhang, W. Lu, H. Wang. 2021. Material flow analysis and life cycle assessment of food waste bioconversion by black soldier fly larvae (Hermetia illucens L.). https://doi.org/10.1016/j.scitotenv.2020.141656
- F. Verneau, Y.F. Zhou, M. Amato, K.G. Grunert, F. La Barbera. 2021. Cross-validation of the entomophagy attitude questionnaire (EAQ): A study in China on eaters and non-eaters. https://doi.org/10.1016/j.foodqual.2020.104029
- C.Y. Chow, R.R. Riantiningtyas, H. Sorensen, M.B. Frost. 2021. School children cooking and eating insects as part of a teaching program – Effects of cooking, insect type, tasting order and food neophobia on hedonic response. https://doi.org/10.1016/j.foodqual.2020.104027
- Z. Dong, Y.Y. Lin, H. Wu, M.M. Zhang. 2021. Selenium accumulation in protein fractions of Tenebrio molitor larvae and the antioxidant and immunoregulatory activity of protein hydrolysates. https://doi.org/10.1016/j.foodchem.2020.127475
- L.A. Santiago, O.M. Fadel, G.M. Tavares. 2021. How does the thermal-aggregation behavior of black cricket protein isolate affect its foaming and gelling properties? https://doi.org/10.1016/j.foodhyd.2020.106169
- S.Q. Wu, T.T. Sun, Z.Z. Cai, J. Shen, W.Z. Yang, Z.M. Zhao, D.P. Yang. 2020. Biolubricant base stock with improved low temperature performance: Ester complex production using housefly (Musca domestica L.) larval lipid. https://doi.org/10.1016/j.renene.2020.10.001 Nissen, S.P. Samaei, E. Babini, A. Gianotti. 2020. Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization. https://doi.org/10.1016/j.foodchem.2020.127410
- L. Nissen, S.P. Samaei, E. Babini, A. Gianotti. 2020. Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization. https://doi.org/10.1016/j.foodchem.2020.127410
- L. Bruni, B. Randazzo, G. Cardinaletti, M. Zarantoniello, F. Mina, G. Secci, F. Tulli, I. Olivotto, G. Parisi. 2020. Dietary inclusion of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss): Lipid metabolism and fillet quality investigations. https://doi.org/10.1016/j.aquaculture.2020.735678
- D. Fabrikov, M.J. Sanchez-Muros, F.G. Barroso, C. Tomas-Almenar, F. Melenchon, M.C. Hidalgo, A.E. Morales, M. Rodriguez-Rodriguez, J. Montes-Lopez. 2020. Comparative study of growth performance and amino acid catabolism in Oncorhynchus mykiss, Tinca tinca and Sparus aurata and the catabolic changes in response to insect meal inclusion in the diet. https://doi.org/10.1016/j.aquaculture.2020.735731
- L. Soetemans, M. Uyttebroek, L. Bastiaens. 2020. Characteristics of chitin extracted from black soldier fly in different life stages. https://doi.org/10.1016/j.ijbiomac.2020.11.041
- M.Y. Miah, Y. Singh, M. Cullere, S. Tenti, A. Dalle Zotte. 2020. Effect of dietary supplementation with full-fat silkworm (Bombyx mori L.) chrysalis meal on growth performance and meat quality of Rhode Island Red x Fayoumi crossbred chickens. https://doi.org/10.1080/1828051X.2020.1752119
- Z.S. Zadeh, F. Kheiri, M. Faghani. 2020. Productive performance, egg-related indices, blood profiles, and interferon-& x194; gene expression of laying Japanese quails fed on Tenebrio molitor larva meal as a replacement for fish meal. https://doi.org/10.1080/1828051X.2020.1722970
- F. Melenchon, A.M. Larran, E. de Mercado, M.C. Hidalgo, G. Cardenete, F.G. Barroso, D. Fabrikov, M. Lourenco, M.R. Pessoa, C. Tomas-Almenar. 2020. Potential use of black soldier fly (Hermetia illucens) and mealworm (Tenebrio molitor) insectmeals in diets for rainbow trout (Oncorhynchus mykiss). https://doi.org/10.1111/anu.13201
- I. Batish, D. Brits, P. Valencia, C. Miyai, S. Rafeeq, Y. Xu, M. Galanopoulos, E. Sismour, R. Ovissipour. 2020. Effects of Enzymatic Hydrolysis on the Functional Properties, Antioxidant Activity and Protein Structure of Black Soldier Fly (Hermetia illucens) Protein. https://doi.org/10.3390/insects11120876
- C. Brigode, P. Hobbi, H. Jafari, F. Verwilghen, E. Baeten, A. Shavandi. 2020. Isolation and physicochemical properties of chitin polymer from insect farm side stream as a new source of renewable biopolymer. https://doi.org/10.1016/j.jclepro.2020.122924
- J. Xu, X. Luo, G. Fang, S. Zhan, J. Wu, D. Wang, Y. Huang. 2020. Transgenic expression of antimicrobial peptides from black soldier fly enhance resistance against entomopathogenic bacteria in the silkworm, Bombyx mori. https://doi.org/10.1016/j.ibmb.2020.103487
- R. Raksasat, J.W. Lim, W. Kiatkittipong, K. Kiatkittipong, Y.C. Ho, M.K. Lam, C. Font-Palma, H.F. Mohd Zaid, C.K. Cheng. 2020. A review of organic waste enrichment for inducing palatability of black soldier fly larvae: Wastes to valuable resources. https://doi.org/10.1016/j.envpol.2020.115488
- X.H. Chu, M.M. Li, G.Y. Wang, K.M. Wang, R.S. Shang, Z.Y. Wang, L.S. Li. 2020. Evaluation of the Low Inclusion of Full-Fatted Hermetia illucens Larvae Meal for Layer Chickens: Growth Performance, Nutrient Digestibility, and Gut Health. https://doi.org/10.3389/fvets.2020.585843
- E.M. Kooienga, C. Baugher, M. Currin, J.K. Tomberlin, H.R. Jordan. 2020. Effects of Bacterial Supplementation on Black Soldier Fly Growth and Development at Benchtop and Industrial Scale. https://doi.org/10.3389/fmicb.2020.587979
- M. Gold, F. von Allmen, C. Zurbrugg, J.B. Zhang, A. Mathys. 2020. Identification of Bacteria in Two Food Waste Black Soldier Fly Larvae Rearing Residues. https://doi.org/10.3389/fmicb.2020.582867
- M.J. Foysal, R. Fotedar, M. Siddik, M.R.Chaklader, A. Tay. 2020. Lactobacillus plantarum in black soldier fly (Hermetica illucens) meal modulates gut health and immunity of freshwater crayfish (Cherax cainii). https://doi.org/10.1016/j.fsi.2020.11.020
- K.L. Boykin, M.A. Mitchell. 2020. Evaluation of vitamin A gut loading in black soldier fly larvae (Hermetia illucens). https://doi.org/10.1002/zoo.21582
- A. Khayrova, S. Lopatin, V. Varlamov. 2020. Obtaining chitin, chitosan and their melanin complexes from insects. https://doi.org/10.1016/j.ijbiomac.2020.11.086
- O. Shishkov, D.L. Hu. 2020. Synchronizing pile formation of black soldier fly larvae star. https://doi.org/10.1140/epjst/e2020-900264-y
- X.X. Zhang, J.Z. Zhang, L.L. Jiang, X. Yu, H.W. Zhu, J.L. Zhang, Z.B. Feng, X. Zhang, G.Z. Chen, Z. Zhang. 2020. Black Soldier Fly (Hermetia illucens) Larvae Significantly Change the Microbial Community in Chicken Manure. https://doi.org/10.1007/s00284-020-02276-w
- S.A. Babarinde, B.M. Mvumi, G.O. Babarinde, F.A. Manditsera, T.O. Akande, A.A. Adepoju. 2020. Insects in food and feed systems in sub-Saharan Africa: the untapped potentials. https://doi.org/10.1007/s42690-020-00305-6
- Z.J. Zhang, X.Z. Wang, H. Wang, E. Huang, J.L. Sheng, L.Q. Zhou, W.Z. Jin. 2020. Housefly Larvae (Musca domestica) Vermicompost on Soil Biochemical Features for a Chrysanthemum (Chrysanthemum morifolium) Farm. https://doi.org/10.1080/00103624.2020.1763389
- N. de Jonge, T.Y. Michaelsen, R. Ejbye-Ernst, A. Jensen, M.E. Nielsen, S. Bahrndorff, J.L. Nielsen. 2020. Housefly (Musca domestica L.) associated microbiota across different life stages. https://doi.org/10.1038/s41598-020-64704-y
- Y.L. Yao, F.X. Zhu, C.L. Hong, H.J. Chen, W.P. Wang, Z.Y. Xue, W.J. Zhu, G.L. Wang, W.B. Tong. 2020. Utilization of gibberellin fermentation residues with swine manure by two-step composting mediated by housefly maggot bioconversion. https://doi.org/10.1016/j.wasman.2020.02.024
- X.X. Xu, H. Ji, I. Belghit, J. Sun. 2020. Black soldier fly larvae as a better lipid source than yellow mealworm or silkworm oils for juvenile mirror carp (Cyprinus carpio var. specularis). https://doi.org/10.1016/j.aquaculture.2020.735453
- M.K. Awasthi, T. Liu, S.K. Awasthi, Y.M. Duan, A. Pandey, Z.Q. Zhang. 2020. Manure pretreatments with black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae): A study to reduce pathogen content. https://doi.org/10.1016/j.scitotenv.2020.139842
- I. Swinscoe, D.M. Oliver, R. Ornsrud, R.S. Quilliam. 2020. The microbial safety of seaweed as a feed component for black soldier fly ( Hermetia illucens ) larvae. https://doi.org/10.1016/j.fm.2020.103535
- C.C. Liu, H.Y. Yao, S.J. Chapman, J.Q. Su, C.W. Wang. 2020. Changes in gut bacterial communities and the incidence of antibiotic resistance genes during degradation of antibiotics by black soldier fly larvae. https://doi.org/10.1016/j.envint.2020.105834
- C. Lalander, E. Ermolaev, V. Wiklicky, B. Vinneras. 2020. Process efficiency and ventilation requirement in black soldier fly larvae composting of substrates with high water content. https://doi.org/10.1016/j.scitotenv.2020.138968
- A. Schlageter-Tello, G.C. Fahey, T. Freel, L. Koutsos, P.S. Miller, W.P. Weiss. 2020. ASAS-NANP Symposium: Ruminant/Nonruminant Feed Composition: Challenges and opportunities associated with creating large feed ingredient composition tables. https://doi.org/10.1093/jas/skaa240
- D. Bruno, T. Bonacci, M. Reguzzoni, M. Casartelli, A. Grimaldi, G. Tettamanti, P. Brandmayr. 2020. An in-depth description of head morphology and mouthparts in larvae of the black soldier fly Hermetia illucens. https://doi.org/10.1016/j.asd.2020.100969
- M. Elsayed, Y. Ran, P. Ai, M. Azab, A. Mansour, K.D. Jin, Y.L. Zhang, A. Abomohra. 2020. Innovative integrated approach of biofuel production from agricultural wastes by anaerobic digestion and black soldier fly larvae. https://doi.org/10.1016/j.jclepro.2020.121495
- S. Dabbou, I. Ferrocino, L. Gasco, A. Schiavone, A. Trocino, G. Xiccato, A.C. Barroeta, S. Maione, D. Soglia, I. Biasato, L. Cocolin, F. Gai, D.M. Nucera. 2020. Antimicrobial Effects of Black Soldier Fly and Yellow Mealworm Fats and Their Impact on Gut Microbiota of Growing Rabbits. https://doi.org/10.3390/ani10081292
- W.C. Pang, D.J. Hou, E.E. Nowar, H.C. Chen, J.B. Zhang, G.P. Zhang, Q. Li, S.C. Wang. 2020. The influence on carbon, nitrogen recycling, and greenhouse gas emissions under different C/N ratios by black soldier fly. https://doi.org/10.1007/s11356-020-09909-4
- C.D. Miranda, J.A. Cammack, J.K. Tomberlin. 2020. Mass Production of the Black Soldier Fly, Hermetia illucens (L.), (Diptera: Stratiomyidae) Reared on Three Manure Types. https://doi.org/10.3390/ani10071243
- S. Bortolini, L.I. Macavei, J.H. Saadoun, G. Foca, A. Ulrici, F. Bernini, D. Malferrari, L. Setti, D. Ronga, L. Maistrello. 2020. Hermetia illucens (L.) larvae as chicken manure management tool for circular economy. https://doi.org/10.1016/j.jclepro.2020.121289
- B. Hoc, M. Genva, M.L. Fauconnier, G. Lognay, F. Francis, R.C. Megido. 2020. About lipid metabolism in Hermetia illucens (L. 1758): on the origin of fatty acids in prepupae. https://doi.org/10.1038/s41598-020-68784-8
- S. Lee, M.A.K. Chowdhury, R.W. Hardy, B.C. Small. 2020. Apparent digestibility of protein, amino acids and gross energy in rainbow trout fed various feed ingredients with or without protease. https://doi.org/10.1016/j.aquaculture.2020.735270
- F.M. Khamis, F.L.O. Ombura, K.S. Akutse, S. Subramanian, S.A. Mohamed, K.K.M. Fiaboe, W. Saijuntha, J.J.A. Van Loon, M. Dicke, T. Dubois, S. Ekesi, C.M. Tanga. 2020. Insights in the Global Genetics and Gut Microbiome of Black Soldier Fly, Hermetia illucens: Implications for Animal Feed Safety Control. https://doi.org/10.3389/fmicb.2020.01538
- Y. Cifuentes, S.P. Glaeser, J. Mvie, J.O. Bartz, A. Muller, H.O. Gutzeit, A. Vilcinskas, P. Kampfer. 2020. The gut and feed residue microbiota changing during the rearing of Hermetia illucens larvae. https://doi.org/10.1007/s10482-020-01443-0
- S.Y. Chia, C.M. Tanga, I.M. Osuga, X. Cheseto, S. Ekesi, M. Dicke, J.J.A. van Loon. 2020. Nutritional composition of black soldier fly larvae feeding on agro-industrial by-products. https://doi.org/10.1111/eea.12940
- J.S. Matos, A.T.M.S. Barberino, L.P. de Araujo, I.P. Lobo, J.A.D. Neto. 2020. Potentials and Limitations of the Bioconversion of Animal Manure Using Fly Larvae. https://doi.org/10.1007/s12649-020-01141-y
- M. Bonelli, D. Bruno, M. Brilli, N. Gianfranceschi, L. Tian, G. Tettamanti, S. Caccia, M. Casartelli. 2020. Black Soldier Fly Larvae Adapt to Different Food Substrates through Morphological and Functional Responses of the Midgut. https://doi.org/10.3390/ijms21144955
- H.K. Ravi, A. Degrou, J.M. Costil, C. Trespeuch, F. Chemat, M.A. Vian. 2020. Larvae Mediated Valorization of Industrial, Agriculture and Food Wastes: Biorefinery Concept through Bioconversion, Processes, Procedures, and Products. https://doi.org/10.3390/pr8070857
- M. Crosbie, C. Zhu, A.K. Shoveller, L.A. Huber. 2020. Standardized ileal digestible amino acids and net energy contents in full fat and defatted black soldier fly larvae meals (Hermetia illucens) fed to growing pigs. https://doi.org/10.1093/tas/txaa104
- M. Gold, J. Egger, A. Scheidegger, C. Zurbrugg, D. Bruno, M. Bonelli, G. Tettamanti, M. Casartelli, E. Schmitt, B. Kerkaert, J. De Smet, L. Van Campenhout, A. Mathys. 2020. Estimating black soldier fly larvae biowaste conversion performance by simulation of midgut digestion. https://doi.org/10.1016/j.wasman.2020.05.026
- Y.J. Hu, Y.H. Huang, T. Tang, L. Zhong, W.Y. Chu, Z.Y. Dai, K.J. Chen, Y. Hu. 2020. Effect of partial black soldier fly (Hermetia illucens L.) larvae meal replacement of fish meal in practical diets on the growth, digestive enzyme and related gene expression for rice field eel (Monopterus albus). https://doi.org/10.1016/j.aqrep.2020.100345
- M. Yildirim-Aksoy, R. Eljack, C. Schrimsher, B.H. Beck. 2020. Use of dietary frass from black soldier fly larvae, Hermetia illucens, in hybrid tilapia (Nile x Mozambique, Oreocromis niloticus x O. mozambique ) diets improves growth and resistance to bacterial diseases. https://doi.org/10.1016/j.aqrep.2020.100373
- M. Zarantoniello, B. Randazzo, G. Gioacchini, C. Truzzi, E. Giorgini, P. Riolo, G. Gioia, C. Bertolucci, A. Osimani, G. Cardinaletti, T. Lucon-Xiccato, V. Milanovi, A. Annibaldi, F. Tulli, V. Notarstefano, S. Ruschioni, F. Clementi, I. Olivotto. 2020. Zebrafish (Danio rerio) physiological and behavioural responses to insect-based diets: a multidisciplinary approach. https://doi.org/10.1038/s41598-020-67740-w
- M. Gold, M. Binggeli, F. Kurt, T. de Wouters, M. Reichlin, C. Zurbrugg, A. Mathys, M. Kreuzer. 2020. Novel Experimental Methods for the Investigation of Hermetia illucens (Diptera: Stratiomyidae) Larvae. https://doi.org/10.1093/jisesa/ieaa057
- D. Azzollini, A. van Iwaarden, C.M.M. Lakemond, V. Fogliano. 2020. Mechanical and Enzyme Assisted Fractionation Process for a Sustainable Production of Black Soldier Fly (Hermetia illucens) Ingredients. https://doi.org/10.3389/fsufs.2020.00080
- B.M. Jones, J.K. Tomberlin. 2020. Validation of Acrylic Paint as a Marking Technique for Examining Mating Success of the Black Soldier Fly Diptera: Stratiomyidae). https://doi.org/10.1093/jee/toaa129
- Q.Y. Xu, Z.Z. Wu, X.N. Zeng, X.C. An. 2020. Identification and Expression Profiling of Chemosensory Genes in Hermetia illucens via a Transcriptomic Analysis. https://doi.org/10.3389/fphys.2020.00720
- L. Francuski, L.W. Beukeboom. 2020. Insects in production – an introduction. https://doi.org/10.1111/eea.12935
- A. Parodi, K. Van Dijk, J.J.A. Van Loon, I.J.M. De Boer, J. Van Schelt, H.H.E. Van Zanten. 2020. Black soldier fly larvae show a stronger preference for manure than for a mass-rearing diet. https://doi.org/10.1111/jen.12768
- C. Rhode, R. Badenhorst, K.L. Hull, M.P. Greenwood, A.E. Bester-van der Merwe, A.A. Andere, C.J. C. Richards. 2020. Genetic and phenotypic consequences of early domestication in black soldier flies (Hermetia illucens). https://doi.org/10.1111/age.12961
- L. Joosten, A. Lecocq, A.B. Jensen, O. Haenen, E. Schmitt, J. Eilenberg. 2020. Review of insect pathogen risks for the black soldier fly (Hermetia illucens) and guidelines for reliable production. https://doi.org/10.1111/eea.12916
- K.Y. Barragan-Fonseca, K.B. Barragan-Fonseca, G. Verschoor, J.J.A. van Loon, M. Dicke. 2020. Insects for peace. https://doi.org/10.1016/j.cois.2020.05.011
- A. Mouithys-Mickalad, E. Schmitt, M. Dalim, T. Franck, N.M. Tome, M. van Spankeren, D. Serteyn, A. Paul. 2020. Black Soldier Fly (Hermetia illucens) Larvae Protein Derivatives: Potential to Promote Animal Health. https://doi.org/10.3390/ani10060941
- M. Shelomi. 2020. Potential of Black Soldier Fly Production for Pacific Small Island Developing States. https://doi.org/10.3390/ani10061038
- S. Raimondi, G. Spampinato, L.I. Macavei, L. Lugli, F. Candeliere, M. Rossi, L. Maistrello, A. Amaretti. 2020. Effect of Rearing Temperature on Growth and Microbiota Composition of Hermetia illucens. https://doi.org/10.3390/microorganisms8060902
- G. Terova, C. Ceccotti, C. Ascione, L. Gasco, S. Rimoldi. 2020. Effects of Partially Defatted Hermetia illucens Meal in Rainbow Trout Diet on Hepatic Methionine Metabolism. https://doi.org/10.3390/ani10061059
- K. Kawasaki, T. Kawasaki, H. Hirayasu, Y. Matsumoto, Y. Fujitani. 2020. Evaluation of Fertilizer Value of Residues Obtained after Processing Household Organic Waste with Black Soldier Fly Larvae (Hermetia illucens). https://doi.org/10.3390/su12124920
- L.A. Cadinu, P. Barra, F. Torre, F. Delogu, F.A. Madau. 2020. Insect Rearing: Potential, Challenges, and Circularity. https://doi.org/10.3390/su12114567
- M. Yu, Z.M. Li, W.D. Chen, T. Rong, G. Wang, F.Y. Wang, X.Y. Ma. 2020. Evaluation of full-fat Hermetia illucens larvae meal as a fishmeal replacement for weanling piglets: Effects on the growth performance, apparent nutrient digestibility, blood parameters and gut morphology. https://doi.org/10.1016/j.anifeedsci.2020.114431
- H.J. Fisher, S.A. Collins, C. Hanson, B. Mason, S.M. Colombo, D.M. Anderson. 2020. Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). https://doi.org/10.1016/j.aquaculture.2020.734978
- N.A. Ushakova, S.V. Ponomarev, Y.V. Fedorovyh, A.I. Bastrakov, D.S. Pavlov. 2020. Physiological Basis of the Nutritional Value of a Concentrate of Hermetia illucens Larvae in Fish Diets. https://doi.org/10.1134/S1062359020030103
- S. Hasnol, K. Kiatkittipong, W. Kiatkittipong, C.Y. Wong, C.S. Khe, M.K. Lam, P.L. Show, W.D. Oh, T.L. Chew, J.W. Lim. 2020. A Review on Insights for Green Production of Unconventional Protein and Energy Sources Derived from the Larval Biomass of Black Soldier Fly. https://doi.org/10.3390/pr8050523
- K. Motoki, S. Ishikawa, C. Spence, C. Velasco. 2020. Contextual acceptance of insect-based foods. https://doi.og/10.1016/j.foodqual.2020.103982
- J.M. VandenBrooks, C.F. Ford, J.F. Harrison. 2020. Responses to Alteration of Atmospheric Oxygen and Social Environment Suggest Trade-Offs among Growth Rate, Life Span, and Stress Susceptibility in Giant Mealworms (Zophobas morio). https://doi.org/10.1086/710726
- R.A. Wu, Q.Z. Ding, L.T. Yin, X.W. Chi, N.Z. Sun, R.H. He, L. Luo, H.L. Ma, Z.K. Li. 2020. Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor): Amino acid, fatty acid, and element profiles. https://doi.org/10.1016/j.foodchem.2020.126818
- C. Garino, H. Mielke, S. Knuppel, T. Selhorst, H. Broll, A. Braeuning. 2020. Quantitative allergenicity risk assessment of food products containing yellow mealworm (Tenebrio molitor). https://doi.org/10.1016/j.fct.2020.111460
- M.L.J. Wessels, D. Azzollini, V. Fogliano. 2020. Frozen storage of lesser mealworm larvae (Alphitobius diaperinus) changes chemical properties and functionalities of the derived ingredients. https://doi.org/10.1016/j.foodchem.2020.126649
- L. Belleggia, V. Milanovic, F. Cardinali, C. Garofalo, M. Pasquini, S. Tavoletti, P. Riolo, S. Ruschioni, N. Isidoro, F. Clementi, A. Ntoumos, L. Aquilanti, A. Osimani. 2020. Listeria dynamics in a laboratory-scale food chain of mealworm larvae (Tenebrio molitor) intended for human consumption. https://doi.org/10.1016/j.foodcont.2020.107246
- L. Kim, S. Baek, K. Son, E. Kim, H.H. Noh, D. Kim, M.S. Oh, B.C. Moon, J.H. Ro. 2020. Optimization of a Simplified and Effective Analytical Method of Pesticide Residues in Mealworms (Tenebrio molitor Larvae) Combined with GC-MS/MS and LC-MS/MS. https://doi.org/10.3390/molecules25153518
- L. Yang, J. Gao, Y. Liu, G. Zhuang, X. Peng, W.M. Wu, X. Zhuang. 2020. Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. https://doi.org/10.1016/j.chemosphere.2020.127818
- X. Han, M. Heinonen. 2020. Development of ultra-high performance liquid chromatographic and fluorescent method for the analysis of insect chitin. https://doi.org/10.1016/j.foodchem.2020.127577
- A. Borremans, S. Bussler, S.T. Sagu, H. Rawel, O.K. Schluter, L. Van Campenhout. 2020. Effect of Blanching Plus Fermentation on Selected Functional Properties of Mealworm (Tenebrio molitor) Powders. https://doi.org/10.3390/foods9070917
- C.I. Rumbos, I.T. Karapanagiotidis, E. Mente, P. Psofakis, C.G. Athanassiou. 2020. Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. https://doi.org/10.1038/s41598-020-67363-1
- H.R. Cho, S.O. Lee. 2020. Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor). https://doi.org/10.1016/j.foodres.2020.109194
- S. Rodjaroen, K. Thongprajukaew, P. Khongmuang, S. Malawa, K. Tuntikawinwong, S. Saekhow. 2020. Ontogenic Development of Digestive Enzymes in Mealworm Larvae (Tenebrio molitor) and Their Suitable Harvesting Time for Use as Fish Feed. https://doi.org/10.3390/insects11060393
- A. Boukil, V. Perreault, J. Chamberland, S. Mezdour, Y. Pouliot, A. Doyen. 2020. High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis Affect Mealworm Allergenic Proteins. https://doi.org/10.3390/molecules25112685
- Y. Song, H. Gu, J.M. Jo, M. Shin, S.Y. Kim, D. Gam, S. Imamura, J.W. Kim. 2020. Production of Functional Peptide with Anti-obesity Effect from Defatted Tenebrio molitor Larvae Using Proteolytic Enzyme. https://doi.org/10.1007/s12257-019-0329-6
- A. Bordiean, M. Krzyzaniak, M.J. Stolarski, S. Czachorowski, D. Peni. 2020. Will Yellow Mealworm Become a Source of Safe Proteins for Europe? https://doi.org/10.3390/agriculture10060233
- Z. Mikolajczak, M. Rawski, J. Mazurkiewicz, B. Kieronczyk, D. Jozefiak. 2020. The Effect of Hydrolyzed Insect Meals in Sea Trout Fingerling (Salmo truttam.trutta) Diets on Growth Performance, Microbiota and Biochemical Blood Parameters. https://doi.org/10.3390/ani10061031
- K. Wendin, L. Martensson, H. Djerf, M. Langton. 2020. Product Quality during the Storage of Foods with Insects as an Ingredient: Impact of Particle Size, Antioxidant, Oil Content and Salt Content. https://doi.org/10.3390/foods9060791
- S.K. Kar, B. van der Hee, L.M.P. Loonen, N. Taverne, J.J. Taverne-Thiele, D. Schokker, M.A. Smits, A.J.M. Jansman, J.M. Wells. 2020. Effects of undigested protein-rich ingredients on polarised small intestinal organoid monolayers. https://doi.org/10.1186/s40104-020-00443-4
- O.D. Okagu, O. Verma, D.J. McClements, C.C. Udenigwe. 2020. Utilization of insect proteins to formulate nutraceutical delivery systems: Encapsulation and release of curcumin using mealworm protein-chitosan nano-complexes. https://doi.org/10.1016/j.ijbiomac.2020.02.198
- F.R. Pino, R.P. Galvez, F.J.E. Carpio, E.M. Guadix. 2020. Evaluation of Tenebrio molitor protein as a source of peptides for modulating physiological processes. https://doi.org/10.1039/d0fo00734j
- J.S. Arena, M.T. Defago. 2020. A novel method for sexing live adult Alphitobius diaperinus. https://doi.org/10.1111/eea.12900
- C.I. Rumbos, I. Pantazis, C.G. Athanassiou. 2020. Population Growth of Alphitobius diaperinus (Coleoptera: Tenebrionidae) on Various Commodities. https://doi.org/10.1093/jee/toz313
- G. Leni, L. Soetemans, A. Caligiani, S. Sforza, L. Bastiaens. 2020. Degree of Hydrolysis Affects the Techno-Functional Properties of Lesser Mealworm Protein Hydrolysates. https://doi.org/10.3390/foods9040381
- S.J. Pyo, D.G. Kang, C. Jung, H.Y. Sohn. 2020. Anti-Thrombotic, Anti-Oxidant and Haemolysis Activities of Six Edible Insect Species. https://doi.org/10.3390/foods9040401
- S. Mancini, F. Fratini, T. Tuccinardi, C. Degl’Innocenti, G. Paci. 2020. Tenebrio molitor reared on different substrates: is it gluten free? https://doi.org/10.1016/j.foodcont.2019.107014
- Y. Yang, J.L. Wang, M.L. Xia. 2020. Biodegradation and mineralization of polystyrene by plastic eating superworms Zophobas atratus. https://doi.org/10.1016/j.scitotenv.2019.135233 M. Keshavarz, Y.H. Jo, T.T. Edosa, Y.S. Han. 2020. Two Roles for the Tenebrio molitor Relish in the Regulation of Antimicrobial Peptides and Autophagy-Related Genes in Response to Listeria monocytogenes. https://doi.org/10.3390/insects11030188
- S. Smetana, L. Leonhardt, S.M. Kauppi, A. Pajic, V. Heinz. 2020. Insect margarine: Processing, sustainability and design. https://doi.org/10.1016/j.jclepro.2020.121670
- Ognik,K. Kozlowski, A. Stepniowska, P. Listos, D. Jozefiak, Z. Zdunczyk, J. Jankowski. 2020. Antioxidant Status and Liver Function of Young Turkeys Receiving a Diet with Full-Fat Insect Meal from Hermetia illucens. https://doi.org/10.3390/ani10081339
- B.K. Mintah, R.H. He, M. Dabbour, J.H. Xiang, H. Jiang, A.A. Agyekum, H.L. Ma. 2020. Characterization of edible soldier fly protein and hydrolysate altered by multiple-frequency ultrasound: Structural, physical, and functional attributes. https://doi.org/10.1016/j.procbio.2020.05.021
- C. Almeida, P. Rijo, C. Rosado. 2020. Bioactive Compounds from Hermetia Illucens Larvae as Natural Ingredients for Cosmetic Application. https://doi.org/10.3390/biom10070976
- I. Biasato, I. Ferrocino, E. Colombino, F.C. Gai, A. Schiavone, L. Cocolin, V. Vincenti, M.T. Capucchio, L. Gasco. 2020. Effects of dietary Hermetia illucens meal inclusion on cecal microbiota and small intestinal mucin dynamics and infiltration with immune cells of weaned piglets. https://doi.org/10.1186/s40104-020-00466-x
- S. Maiolo, G. Parisi, N. Biondi, F. Lunelli, E. Tibaldi, R. Pastres. 2020. Fishmeal partial substitution within aquafeed formulations: life cycle assessment of four alternative protein sources. https://doi.org/10.1007/s11367-020-01759-z
- D.N. Nyangena, C. Mutungi, S. Imathiu, J. Kinyuru, H. Affognon, S. Ekesi, D. Nakimbugwe, K.K.M. Fiaboe. 2020. Effects of Traditional Processing Techniques on the Nutritional and Microbiological Quality of Four Edible Insect Species Used for Food and Feed in East Africa. https://doi.org/10.3390/foods9050574
- W. Czekala, D.Janczak, M. Cieslik, J. Mazurkiewicz, J. Pulka. 2020. Food Waste Management Using the Hermetia Illucens Insect. https://doi.org/10.12911/22998993/119977
- M. Mastoraki, P.M. Ferrandiz, S.C. Vardali, D.C. Kontodimas, Y.P. Kotzamanis, L. Gasco, S. Chatzifotis, E. Antonopoulou. 2020. A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). https://doi.org/10.1016/j.aquaculture.2020.735511
- A. Bauer, A.M. Bauer, J.K. Tomberlin. 2020. Impact of diet moisture on the development of the forensically important blow fly Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae). https://doi.org/10.1016/j.forsciint.2020.110333
- A.Y. Bloukounon-Goubalan, A. Saidou, C.A.A.M. Chrysostome, M. Kenis, G.L. Amadji, A.M. Igue, G.A. Mensah. 2020. Physical and Chemical Properties of the Agro-processing By-products Decomposed by Larvae of Musca domestica and Hermetia illucens. https://doi.org/10.1007/s12649-019-00587-z
- M. Igual, P. Garcia-Segovia, J. Martinez-Monzo. 2020. Effect of Acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded products. https://doi.org/10.1016/j.jfoodeng.2020.110032
- S.M. Kiiru, J.N. Kinyuru, B.N. Kiage, A. Martin, A.K. Marel, R. Osen. 2020. Extrusion texturization of cricket flour and soy protein isolate: Influence of insect content, extrusion temperature, and moisture-level variation on textural properties. https://doi.org/10.1002/fsn3.1700
- M. Bawa, S. Songsermpong, C. Kaewtapee, W. Chanput. 2020. Nutritional, sensory, and texture quality of bread and cookie enriched with house cricket (Acheta domesticus) powder. https://doi.org/10.1111/jfpp.14601
- P. Otero, A. Gutierrez-Docio, J.N. del Hierro, G. Reglero, D. Martin. 2020. Extracts from the edible insects Acheta domesticus and Tenebrio molitor with improved fatty acid profile due to ultrasound assisted or pressurized liquid extraction. https://doi.org/10.1016/j.foodchem.2020.126200
- A. Froehling, S. Bussler, J. Durek, O.K. Schluter. 2020. Thermal Impact on the Culturable Microbial Diversity Along the Processing Chain of Flour From Crickets (Acheta domesticus). https://doi.org/10.3389/fmicb.2020.00884
- M. Dicke, J. Eilenberg, J. Falcao Salles, A.B. Jensen, A. Lecocq, G.P. Pijlman, J.J.A. van Loon, M.M. van Oers. 2020. Edible insects unlikely to contribute to transmission of coronavirus SARS-CoV-https://doi.org/10.3920/JIFF2020.0039
- I. Biasato, I. Ferrocino, S. Dabbou, R. Evangelista, F. Gai, L. Gasco, L. Cocolin, M.T. Capucchio, A. Schiavone. 2020. Black soldier fly and gut health in broiler chickens: insights into the relationship between cecal microbiota and intestinal mucin composition. https://doi.org/10.1186/s40104-019-0413-y
- L.Gasco, G. Acuti, P. Bani, A. Dalle Zotte, P.P. Danieli, A. De Angelis, R. Fortina, R. Marino, G. Parisi, G.Piccolo, L. Pinotti, A. Prandini, A. Schiavone, G. Terova, F. Tulli, A. Roncarati. 2020. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. https://doi.org/10.1080/1828051X.2020.1743209
- C.J.L. Balolong, B.S. Jumawan, E.C. Taer. 2020. Carcass quality evaluation of broilers fed with black
soldier fly (Hermetia Illucens) larvae. https://doi.org/10.24214/jecet.A.9.2.27280 - U. Elahi, J. Wang, Y.B. Ma, S.G. Wu, J. Wu, G.H. Qi, H.J. Zhang. 2020. Evaluation of Yellow Mealworm Meal as a Protein Feedstuff in the Diet of Broiler Chicks. https://doi.org/10.3390/ani10020224
- A. Freccia, J.S.B. Tubin, A.N. Rombenso, M.G. Coelho. 2020. Insects in Aquaculture Nutrition:
An Emerging Eco-Friendly Approach or Commercial Reality? http://dx.doi.org/10.5772/intechopen.90489 - M. Abdel-Tawwab, R.H. Khalil, A.A. Metwally, M.S. Shakweer, M.A. Khallaf, H.M.R. Abdel-Latif. 2020. Effects of black soldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hematobiochemical variables of European sea bass, Dicentrarchus labrax. https://doi.org/10.1016/j.aquaculture.2020.735136
- M.Y. Aksoy, R. Eljack, B.H. Beck. 2020. Nutritional value of frass from black soldier fly larvae, Hermetia illucens, in a channel catfish, Ictalurus punctatus, diet. https://doi.org/10.1111/anu.13040
- G. Chemello, M. Renna, C. Caimi, I. Guerreiro, A. Oliva-Teles, P. Enes, I. Biasato, A. Schiavone, F. Gai, L. Gasco. 2020. Partially Defatted Tenebrio molitor Larva Meal in Diets for Grow-Out Rainbow Trout, Oncorhynchus mykiss (Walbaum): Effects on Growth Performance, Diet Digestibility and Metabolic Responses. https://doi.org/10.3390/ani10020229
- L. Setti, E. Francia, A. Pulvirenti, S. Gigliano, M. Zaccardelli, C. Pane, F. Caradonia, S. Bortolini, L. Maistrello, D. Ronga. 2020. Use of black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae processing residue in peat-based growing media. https://doi.org/10.1016/j.wasman.2019.06.017
- M.Y. Miah, Y. Singh, M. Cullere, S. Tenti, A. Dalle Zotte. 2020. Effect of dietary supplementation with full-fat silkworm (Bombyx mori L.) chrysalis meal on growth performance and meat quality of Rhode Island Red x Fayoumi crossbred chickens. https://doi.org/10.1080/1828051X.2020.1752119
- Z.S. Zadeh, F. Kheiri, M. Faghani. 2020. Productive performance, egg-related indices, blood profiles, and interferon-& x194; gene expression of laying Japanese quails fed on Tenebrio molitor larva meal as a replacement for fish meal. https://doi.org/10.1080/1828051X.2020.1722970
- G. Leni, B. Prandi, M. Varani, A. Faccini, A. Caligiani, S. Sforza. 2020. Peptide fingerprinting of Hermetia illucens and Alphitobius diaperinus: Identification of insect species-specific marker peptides for authentication in food and feed. https://doi.org/10.1016/j.foodchem.2020.126681
- E. Daniso, P. Melpignano, F. Tulli. 2020. An OLED-based genosensor for the detection of Hermetia illucens in feeds. https://doi.org/10.1016/j.foodcont.2020.107179
- K. Proc, P. Bulak, D. Wiacek, A. Bieganowski. 2020. Hermetia illucens exhibits bioaccumulative potential for 15 different elements – Implications for feed and food production. https://doi.org/10.1016/j.scitotenv.2020.138125
- S. Negi, A. Mandpe, A. Hussain, S. Kumar. 2020. Collegial effect of maggots larvae and garbage enzyme in rapid composting of food waste with wheat straw or biomass waste. https://doi.org/10.1016/j.jclepro.2020.120854
- Y.B. Kim, D.H. Kim, S.B. Jeong, J.W. Lee, T.H. Kim, H.G. Lee, W. Kyung. 2020. Black soldier fly larvae oil as an alternative fat source in broiler nutrition. https://doi.org/10.1016/j.psj.2020.01.018
- D.G.A.B. Oonincx, S. Laurent, M.E. Veenenbos, J.J.A. van Loon. 2020. Dietary enrichment of edible insects with omega 3 fatty acids. https://doi.org/10.1111/1744-7917.12669
- C.Y. Wong, J.W. Lim, F.K. Chong, M.K. Lam, Y. Uemura, W.N. Tan, M.J.K. Bashir, S.M. Lam, J.C. Sin, S.S. Lam. 2020. Valorization of exo-microbial fermented coconut endosperm waste by black soldier fly larvae for simultaneous biodiesel and protein productions. https://doi.org/10.1016/j.envres.2020.109458
- M. Abdel-Tawwab, R.H. Khalil, A.A. Metwally, M.S. Shakweer, M.A. Khallaf, H.M.R. Abdel-Latif, 2020. Effects of black soldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, Dicentrarchus labrax. https://doi.org/10.1016/j.aquaculture.2020.735136
- Y. Ao, C.R. Yang, S.C. Wang, Q.Y. Hu, L. Yi, J.B. Zhang, Z.N. Yu, M.M. Cai, C. Yu. 2020. Characteristics and nutrient function of intestinal bacterial communities in black soldier fly (Hermetia illucens L.) larvae in livestock manure conversion. https://doi.org/10.1111/1751-7915.13595
- R. Jing, T.Z. Liu, X. Tian, H. Rezaei, C. Yuan, J. Qian, Z. Zhang. 2020. Sustainable strategy for municipal solid waste disposal in Hong Kong: current practices and future perspectives. https://doi.org/10.1007/s11356-020-09096-2
- L. Palma, J. Fernandez-Bayo, F. Putri, J.S. VanderGheynst. 2020. Almond byproduct composition impacts the rearing of black soldier fly larvae and quality of the spent substrate as a soil amendment. https://doi.org/10.1002/jsfa.10522
- X. Tan, H.S. Yang, M. Wang, Z.F. Yi, F.J. Ji, J.Z. Li, Y.L. Yin. 2020. Amino acid digestibility in housefly and black soldier fly prepupae by growing pigs. https://doi.org/10.1016/j.anifeedsci.2020.114446
- B. Altmann, R. Wigger, M. Ciulu, D. Morlein. 2020. The effect of insect or microalga alternative protein feeds on broiler meat quality. https://doi.org/10.1002/jsfa.10473
- D. Zhu, X.W. Huang, F. Tu, C.W. Wang, F. Yang. 2020. Preparation, antioxidant activity evaluation, and identification of antioxidant peptide from black soldier fly (Hermetia illucens L.) larvae. https://doi.org/10.1111/jfbc.13186
- S. Hasnol, J.W. Lim, C.Y. Wong, M.K. Lam, S.K.O. Ntwampe.2020. Liminal presence of exo-microbes inoculating coconut endosperm waste to enhance black soldier fly larval protein and lipid. https://doi.org/10.1007/s11356-020-09034-2
- J.H. Saadoun, G. Montevecchi, L. Zanasi, S. Bortolini, L.I. Macavei, F. Masino, L. Maistrello, A. Antonelli. 2020. Lipid profile and growth of black soldier flies (Hermetia illucens, Stratiomyidae) reared on by-products from different food chains. https://doi.org/10.1002/jsfa.10397
- A.A. Adeoye, Y. Akegbejo-Samsons, F.J. Fawole, S.J. Davies. 2020. Preliminary assessment of black soldier fly (Hermetia illucens) larval meal in the diet of African catfish (Clarias gariepinus): Impact on growth, body index, and hematological parameters. https://doi.org/10.1111/jwas.12691
- M. Fan, N. Liu, W.X. Nian; J. Zhang, M. Cai. 2020. Tolerance and Removal of Four Polycyclic Aromatic Hydrocarbon Compounds (PAHs) by Black Soldier Fly (Diptera: Stratiomyidae). https://doi.org/10.1093/ee/nvaa043
- J.R. McConville, E. Kvarnstrom, A.C. Nordin, H. Jonsson, C.B. Niwagaba. 2020. Structured Approach for Comparison of Treatment Options for Nutrient-Recovery From Fecal Sludge. https://doi.org/10.3389/fenvs.2020.00036
- H.R. Wang, K.U. Rehman, W.J. Feng, D. Yang, R.U. Rehman, M.M. Cai, J.B. Zhang, Z.N. Yu, L.Y. Zheng. 2020. Physicochemical structure of chitin in the developing stages of black soldier fly. https://doi.org/10.1016/j.ijbiomac.2020.01.293
- W.C. Pang, D.J. Hou, J.S. Chen, E.E. Nowar, Z.T. Li, R.G. Hu, J.K. Tomberlin, Z.N. Yu, Q. Li, S.C. Wang. 2020. Reducing greenhouse gas emissions and enhancing carbon and nitrogen conversion in food wastes by the black soldier fly. https://doi.org/10.1016/j.jenvman.2020.110066
- M. Shelomi, M.K. Wu, S.M. Chen, J.J. Huang, C.G. Burke. 2020. Microbes Associated With Black Soldier Fly (Diptera: Stratiomiidae) Degradation of Food Waste. https://doi.org/10.1093/ee/nvz164
- M. Campbell, J. Ortuno, A.C. Stratakos, M. Linton, N. Corcionivoschi, T. Elliott, A. Koidis, K. Theodoridou. 2020. Impact of Thermal and High-Pressure Treatments on the Microbiological Quality and In Vitro Digestibility of Black Soldier Fly (Hermetia illucens) Larvae. https://doi.org/10.3390/ani10040682
- Y. Sripontan, C. Chiu, S. Tanansathaporn, K. Leasen, K. Manlong. 2020. Modeling the Growth of Black Soldier Fly Hermetia illucens (Diptera: Stratiomyidae): An Approach to Evaluate Diet Quality. https://doi.org/10.1093/jee/toz337
- P. Li, G.Y. Wu. 2020. Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. https://doi.org/10.1007/s00726-020-02833-4
- H. Li, H.W. Li. 2020. Approaching Sustainable Concentrated Animal Feeding Operations Using a Triad Microcirculation Farm Model. https://doi.org/10.1089/ees.2019.0401
- Z.Y. Liu, A.J. Najar-Rodriguez, M.A. Minor, D.I. Hedderley, P.C.H. Morel. 2020. Mating success of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), under four artificial light sources. https://doi.org/10.1016/j.jphotobiol.2020.111815
- N. Wu, X.B. Wang, X.Y. Xu, R.J. Cai, S.Y. Xie. 2020. Effects of heavy metals on the bioaccumulation, excretion and gut microbiome of black soldier fly larvae (Hermetia illucens). https://doi.org/10.1016/j.ecoenv.2020.110323
- D.H. Lee, K.B. Chu, H.J. Kang, S.H. Lee, F.S. Quan. 2020. Peptides in the hemolymph of Hermetia illucens larvae completely inhibit the growth of Klebsiella pneumonia in vitro and in vivo. https://doi.org/10.1016/j.aspen.2019.10.004
- W.C. Pang, D.J. Hou, J.W. Ke, J.S. Chen, M.T. Holtzapple, J.K. Tomberlin, H.C. Chen, J.B. Zhang, Q. Li. 2020. Production of biodiesel from CO2 and organic wastes by fermentation and black soldier fly. https://doi.org/10.1016/j.renene.2019.10.099
- I.G. Lopes, C. Lalander, R.M. Vidotti, B. Vinneras. 2020. Using Hermetia illucens larvae to process biowaste from aquaculture production. https://doi.org/10.1016/j.jclepro.2019.119753
- V. Gkarane, M. Ciulu, B. Altmann, D. Morlein. 2020. Effect of Alternative Protein Feeds on the Content of Selected Endogenous Bioactive and Flavour-Related Compounds in Chicken Breast Meat. https://doi.org/10.3390/foods9040392
- P. Erbland, A. Alyokhin, L.B. Perkins, M. Peterson. 2020. Dose-Dependent Retention of Omega-3 Fatty Acids by Black Soldier Fly Larvae (Diptera: Stratiomyidae). https://doi.org/10.1093/jee/toaa045
- S. Barbi, L.I. Macavei, A. Fuso, A.V. Luparelli, A. Caligiani, A.M. Ferrari, L. Maistrello, M. Montorsi. 2020. Valorization of seasonal agri-food leftovers through insects. https://doi.org/10.1016/j.scitotenv.2019.136209
S.Y. Leong, S.R.M. Kutty. 2020. Characteristic of Hermetia illucens Fatty Acid and that of the Fatty Acid Methyl Ester Synthesize Based on Upcycling of Perishable Waste. https://doi.org/10.1007/s12649-020-01018-0 - M. Zarantoniello, A. Zimbelli, B. Randazzo, M.D. Compagni, C. Truzzi, M. Antonucci, P. Riolo, N. Loreto, A. Osimani, V. Milanovic, E. Giorgini, G. Cardinaletti, F. Tulli, R. Cipriani, G. Gioacchini, I. Olivotto. 2020. Black Soldier Fly (Hermetia illucens) reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production. https://doi.org/10.1016/j.aquaculture.2019.734659
- F.J. Fawole, A.A. Adeoye, L.O. Tiamiyu, K.I. Ajala, S.O. Obadara, I.O. Ganiyu. 2020. Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. https://doi.org/10.1016/j.aquaculture.2019.734849
- S. Roques, C. Deborde, L. Guimas, Y. Marchand, N. Richard, D. Jacob, S. Skiba-Cassy, A. Moing, B. Fauconneau. 2020. Integrative Metabolomics for Assessing the Effect of Insect (Hermetia illucens) Protein Extract on Rainbow Trout Metabolism. https://doi.org/10.3390/metabo10030083
- Harlystiarini, R. Mutia, I.W.T. Wibawan, D.A. Astuti. 2020. Immune Responses and Egg Productions of Quails Fed Rations Supplemented with Larvae Meal of Black Soldier Fly (Hermetia illucens). https://doi.org/10.5398/tasj.2020.43.1.43
- C.Y. Wong, Y.C. Ho, J.W. Lim, P.L. Show, S. Chong, Y.J. Chan, C.D. Ho, M. Mohamad, T.Y. Wu, M.K. Lam, G.T. Pan. 2020. In-Situ Yeast Fermentation Medium in Fortifying Protein and Lipid Accumulations in the Harvested Larval Biomass of Black Soldier Fly. https://doi.org/10.3390/pr8030337
- W.L. Feng, H. Xiong, W.G. Wang, X.L. Duan, T. Yang, C. Wu, F. Yang, T.L. Wang, C.W. Wang. 2020.
A facile and mild one-pot process for direct extraction of lipids from wet energy insects of black soldier fly larvae. https://doi.org/10.1016/j.renene.2019.08.137 - H. Chung, S. Cho, C.H. Kim, M.J. Kim. 2020. Effects of microplastics and salinity on food waste processing by black soldier fly (Hermetia illucens) larvae. https://doi.org/10.1186/s41610-020-0148-x
- T. Liu, M.K. Awasthi, S.K. Awasthi, Y.M. Duan, Z.Q. Zhang. 2020. Effects of black soldier fly larvae (Diptera: Stratiomyidae) on food waste and sewage sludge composting. https://doi.org/10.1016/j.jenvman.2019.109967
- Z. Kotze, J.K. Tomberlin. 2020. Influence of Substrate Age and Interspecific Colonization on Oviposition Behavior of a Generalist Feeder, Black Soldier Fly (Diptera: Stratiomyidae), on Carrion. https://doi.org/10.1093/jme/tjaa021
- X.X. Xu, H. Ji, H.B. Yu, J.S. Zhou. 2020. Influence of dietary black soldier fly (Hermetia illucens Linnaeus) pulp on growth performance, antioxidant capacity and intestinal health of juvenile mirror carp (Cyprinus carpio var. specularis). https://doi.org/10.1111/anu.13005
- C.Y. Wong, M.N.M. Aris, H. Daud, M.K. Lam, C.S. Yong, H. Abu Hasan, S.W. Chong, P.L. Show, O.D. Hajoeningtijas, Y.C. Ho, P.S. Goh, H. Kausarian, G.T. Pan, J.W. Lim. 2020. In-Situ Yeast Fermentation to Enhance Bioconversion of Coconut Endosperm Waste into Larval Biomass of Hermetia illucens: Statistical Augmentation of Larval Lipid Content. https://doi.org/10.3390/su12041558
- S.Y. Wang, L.L. Wu, B.L. Li, D.Y. Zhang. 2020. Reproductive Potential and Nutritional Composition of Hermetia illucens (Diptera: Stratiomyidae) Prepupae Reared on Different Organic Wastes. https://doi.org/10.1093/jee/toz296
- N. Ewald, A. Vidakovic, M. Langeland, A. Kiessling, S. Sampels, C. Lalander. 2020. Fatty acid composition of black soldier fly larvae (Hermetia illucens) – Possibilities and limitations for modification through diet. https://doi.org/10.1016/j.wasman.2019.10.014
- Z. Mwaniki, A.K. Shoveller, L.A. Huber, E.G. Kiarie. 2020. Complete replacement of soybean meal with defatted black soldier fly larvae meal in Shaver White hens feeding program (28-43 wks of age): impact on egg production, egg quality, organ weight, and apparent retention of components. https://doi.org/10.1016/j.psj.2019.10.032
- E. D’Hondt, L. Soetemans, L. Bastiaens, M. Maesen, V. Jespers, B. Van den Bosch, S. Voorspoels, K. Elst. 2020. Simplified determination of the content and average degree of acetylation of chitin in crude black soldier fly larvae samples. https://doi.org/10.1016/j.carres.2019.107899
- L. Mazza, X.P. Xiao, K.U. Rehman, M.M. Cai, D.N. Zhang, S. Fasulo, J.K. Tomberlin, L.Y. Zheng, A.A. Soomro, Z.N. Yu, J.B. Zhang. 2020. Management of chicken manure using black soldier fly (Diptera: Stratiomyidae) larvae assisted by companion bacteria. https://doi.org/10.1016/j.wasman.2019.10.055
- A. Zhang. 2020. CIRCULARITY AND ENCLOSURES: Metabolizing Waste with the Black Soldier Fly. https://doi.org/10.14506/ca35.1.08
- J. Sypniewski, B. Kieronczyk, A. Benzertiha, Z. Mikolajczak, E. Pruszynska-Oszmalek, P. Kolodziejski, M. Sassek, M. Rawski, W. Czekala, D. Jozefiak. 2020. Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: effect on performance, digestibility, microbial community, immune and physiological status and final product quality. https://doi.org/10.1080/00071668.2020.1716302
- G. Leni, T. Tedeschi, A. Faccini, F. Pratesi, C. Folli, I. Puxeddu, P. Migliorini, N. Gianotten, J. Jacobs, S. Depraetere, A. Caligiani, S. Sforza. 2020. Shotgun proteomics, in-silico evaluation and immunoblotting assays for allergenicity assessment of lesser mealworm, black soldier fly and their protein hydrolysates. https://doi.org/10.1038/s41598-020-57863-5
- B. Georgescu, D. Struti, T. Papuc, D. Ladosi, A. Board. 2020. Body weight loss of black soldier fly Hermetia illucens (Diptera: Stratiomyidae) during development in non-feeding stages: Implications for egg clutch parameters. https://doi.org/10.14411/eje.2020.023
- B. Kim, H.T. Bang, K.H. Kim, M.J. Kim, J.Y. Jeong, J.L. Chun, S.Y. Ji. 2020. Evaluation of black soldier fly larvae oil as a dietary fat source in broiler chicken diets. https://doi.org/10.5187/jast.2020.62.2.187
- C. Truzzi, A. Annibaldi, F. Girolametti, L. Giovannini, P. Riolo, S. Ruschioni, I. Olivotto, S. Illuminati. 2020. A Chemically Safe Way to Produce Insect Biomass for Possible Application in Feed and Food Production. https://doi.org/10.3390/ijerph17062121
- G. Bosch, D.G.A.B. Oonincx, H.R. Jordan, J. Zhang, J.J.A. van Loon, A. van Huis, J.K. Tomberlin. 2020. Standardisation of quantitative resource conversion studies with black soldier fly larvae. https://doi.org/10.3920/JIFF2019.0004
- J.C. Schneider. 2020. Effects of light intensity on mating of the black soldier fly (Hermetia illucens, Diptera: Stratiomyidae). https://doi.org/10.3920/JIFF2019.0003
- G. Montevecchi, L. Zanasi, F. Masino, L. Maistrello, A. Antonelli. 2020. Black soldier fly (Hermetia illucens L.): effect on the fat integrity using different approaches to the killing of the prepupae. https://doi.org/10.3920/JIFF2019.0002
- D. Dzepe, P. Nana, A. Fotso, T. Tchuinkam, R. Djouaka. 2020. Influence of larval density, substrate moisture content and feedstock ratio on life history traits of black soldier fly larvae. https://doi.org/10.3920/JIFF2019.0034
- B. Kieronczyk, J. Sypniewski, M. Rawski, W. Czekala, S. Swiatkiewicz, D. Jozefiak. 2020. From Waste to Sustainable Feed Material: The Effect of Hermetia Illucens Oil on the Growth Performance, Nutrient Digestibility, and Gastrointestinal Tract Morphometry of Broier Chickens. https://doi.org/10.2478/aoas-2019-0066
- L. Macavei, G. Benassi, S. Giacomo; V. Stoian, L. Maistrello. 2020. Optimization of Hermetia illucens (L.) egg laying under different nutrition and light conditions. https://doi.org/10.1371/journal.pone.0232144
- C. Truzzi, E. Giorgini, A. Annibaldi, M. Antonucci, S. Illuminati, G. Scarponi, P. Riolo, N. Isidoro, C. Conti, M. Zarantoniello, R. Cipriani, I. Olivotto. 2020. Fatty acids profile of black soldier fly (Hermetia illucens): Influence of feeding substrate based on coffee-waste silverskin enriched with microalgae. https://doi.org/10.1016/j.anifeedsci.2019.114309
- S. Zhan, G.Q. Fang, M.M. Cai, Z.Q. Kou, J. Xu, Y.H. Cao, L. Bai, Y.X. Zhang, Y.M. Jiang, X.Y. Luo, J. Xu, X. Xu, L.Y. Zheng, Z.N. Yu, H. Yang, Z.J. Zhang, S.B. Wang, J.K. Tomberlin, J.B. Zhang, Y.P. Huang. 2020. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. https://doi.org/10.1038/s41422-019-0252-6
- C. Jucker, D. Lupi, C.D. Moore, M.G. Leonardi, S. Savoldelli. 2020. Nutrient Recapture from Insect Farm Waste: Bioconversion with Hermetia illucens (L.) (Diptera: Stratiomyidae). https://doi.org/10.3390/su12010362
- S. Do, L. Koutsos, P.L. Utterback, C.M. Parsons, M.R.C. de Godoy, K.S. Swanson. 2020. Nutrient and AA digestibility of black soldier fly larvae differing in age using the precision-fed cecectomized rooster assay. https://doi.org/10.1093/jas/skz363
- J.K. Tomberlin, A. van Huis. 2020. Black soldier fly from pest to ‘crown jewel’ of the insects as feed industry: an historical perspective. https://doi.org/10.3920/JIFF2020.0003
- J.B. Zhang, J.K. Tomberlin, M.M. Cai, X.P. Xiao, L.Y. Zheng, Z.N. Yu. 2020. Research and industrialisation of Hermetia illucens L. in China. https://doi.org/10.3920/JIFF2019.0020
- A. van Huis. 2020. Insects as food and feed, a new emerging agricultural sector: a review. https://doi.org/10.3920/JIFF2019.0017
- J.N. Kinyuru, N.W. Ndung’u. 2020. Promoting edible insects in Kenya: historical, present and future perspectives towards establishment of a sustainable value chain. https://doi.org/10.3920/JIFF2019.0016
- M.J. Adegbeye, P.R.K. Reddy, A.I. Obaisi, M.M.M.Y. Elghandour, K.J. Oyebamiji, A.Z.M. Salem, O.T. Morakinyo-Fasipe, M. Cipriano-Salazar, L.M. Camacho-Diaz. 2020. Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations – An overview. https://doi.org/10.1016/j.jclepro.2019.118319
- C. Caimi, L. Gasco, I. Biasato, V. Malfatto, K. Varello, M. Prearo, P. Pastorino, M.C. Bona, D.R. Francese, A. Schiavone, A.C. Elia, A.J.M. Dorr, F. Gai. 2020. Could Dietary Black Soldier Fly Meal Inclusion Affect the Liver and Intestinal Histological Traits and the Oxidative Stress Biomarkers of Siberian Sturgeon (Acipenser baerii) Juveniles? https://doi.org/10.3390/ani10010155
- G. Secci, F. Bovera, G. Parisi, G. Moniello. 2020. Quality of Eggs and Albumen Technological Properties as Affected by Hermetia Illucens Larvae Meal in Hens’ Diet and Hen Age. https://doi.org/10.3390/ani10010081
- A. Urbanek, J. Rybak, M. Wrobel, K. Leluk, A.M. Mironczuk. 2020. A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. https://doi.org/10.1016/j.envpol.2020.114281
- F. Francis, G. Mazzucchelli, D. Baiwir, F. Debode, G. Berben, R.C. Megido. 2020. Proteomics based approach for edible insect fingerprinting in novel food: Differential efficiency according to selected model species. https://doi.org/10.1016/j.foodcont.2020.107135
- P. Otero, A. Gutierrez-Docio, J.N. del Hierro, G. Reglero, D. Martin. 2020. Extracts from the edible insects Acheta domesticus and Tenebrio molitor with improved fatty acid profile due to ultrasound assisted or pressurized liquid extraction. https://doi.org/10.1016/j.foodchem.2020.126200
- P. Billen, L. Khalifa, F. Van Gerven, S. Tavernier, S. Spatari. 2020. Technological application potential of polyethylene and polystyrene biodegradation by macro-organisms such as mealworms and wax moth larvae. https://doi.org/10.1016/j.scitotenv.2020.139521
- A. Basto, E. Matos, L.M.P. Valente. 2020. Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. https://doi.org/10.1016/j.aquaculture.2020.735085
- K. Matyja, J. Rybak, B. Hanus-Lorenz, M. Wrobel, R. Rutkowski. 2020. Effects of polystyrene diet on Tenebrio molitor larval growth, development and survival: Dynamic Energy Budget (DEB) model analysis. https://doi.org/10.1016/j.envpol.2020.114740
- A. Roncolini, V. Milanovic, L. Aquilanti, F. Cardinali, C. Garofalo, R. Sabbatini, F. Clementi, L. Belleggia, M. Pasquini, M. Mozzon, R. Foligni, M.F. Trombetta, M.N. Haouet, M.S. Altissimi, S. Di Bella, A. Piersanti, F. Griffoni, A. Reale, S. Niro, A. Osimani. 2020. Lesser mealworm (Alphitobius diaperinus) powder as a novel baking ingredient for manufacturing high-protein, mineral-dense snacks. https://doi.org/10.1016/j.foodres.2020.109031
- A.J.D. Lucas, L.M. de Oliveira, M. da Rocha, C. Prentice. 2020. Edible insects: An alternative of nutritional, functional and bioactive compounds. https://doi.org/10.1016/j.foodchem.2019.126022
- D. Kowalska, A. Gugolek, J. Strychalski. 2020. Evaluation of Slaughter Parameters and Meat Quality of Rabbits fed Diets with Silkworm Pupae and Mealworm Larvae Meals. https://doi.org/10.2478/aoas-2019-0080
- L. Hoffmann, M. Rawski, S. Nogales-Merida, J. Mazurkiewicz. 2020. Dietary Inclusion of Tenebrio Molitor Meal in Sea Trout Larvae Rearing: Effects on Fish Growth Performance, Survival, Condition, and GIT and Liver Enzymatic Activity. https://doi.org/10.2478/aoas-2020-0002
- A. Jozefiak, A. Benzertiha, B. Kieronczyk, A. Lukomska, I. Wesolowska, M. Rawski. 2020. Improvement of Cecal Commensal Microbiome Following the Insect Additive into Chicken Diet. https://doi.org/10.3390/ani10040577
- M.A. Nascimento, R.T. Pereira, A.B.S. de Oliveira, D. Suckeveris, A.M. Burin, T.D. Mastrangelo, D.V. da Costa, J.F.M. Menten. 2020. Cafeteria-Type Feeding of Chickens Indicates a Preference for Insect (Tenebrio molitor) Larvae Meal. https://doi.org/10.3390/ani10040627
- J.S.B. Tubin, D. Paiano, G.S.D. Hashimoto, W.E. Furtado, M.L. Martins, E. Durigon, M.G.C. Emerenciano. 2020. Tenebrio molitor meal in diets for Nile tilapia juveniles reared in biofloc system. https://doi.org/10.1016/j.aquaculture.2019.734763
- D. Houben, G. Daoulas, M.P. Faucon, A.M. Dulaurent. 2020. Potential use of mealworm frass as a fertilizer: Impact on crop growth and soil properties. https://doi.org/10.1038/s41598-020-61765-x
- S. Meyer, D.K. Gessner, M.S. Braune, T. Friedhoff, E. Most, M. Horing, G. Liebisch, H. Zorn, K. Eder, R. Ringseis. 2020. Comprehensive evaluation of the metabolic effects of insect meal from Tenebrio molitor L. in growing pigs by transcriptomics, metabolomics and lipidomics. https://doi.org/10.1186/s40104-020-0425-7
- L. Soetemans, N. Gianotten, L. Bastiaens. 2020. Agri-Food Side-Stream Inclusion in The Diet of Alphitobius Diaperinus. Part 2: Impact on Larvae Composition. https://doi.org/10.3390/insects11030190
- S. Ruschioni, N. Loreto, R. Foligni, C. Mannozzi, N. Raffaelli, F. Zamporlini, M. Pasquini, A. Roncolini, F. Cardinali, A. Osimani, L. Aquilanti, N. Isidoro, P. Riolo, M. Mozzon. 2020. Addition of Olive Pomace to Feeding Substrate Affects Growth Performance and Nutritional Value of Mealworm (Tenebrio Molitor L.) Larvae. https://doi.org/10.3390/foods9030317
- K.H. Cho, S.W. Kang, J.S. Yoo, D.K. Song, Y.H. Chung, G.T. Kwon, Y.Y. Kim. 2020. Effects of mealworm (Tenebrio molitor) larvae hydrolysate on nutrient ileal digestibility in growing pigs compared to those of defatted mealworm larvae meal, fermented poultry by-product, and hydrolyzed fish soluble. https://doi.org/10.5713/ajas.19.0793
- S. Ites, S. Smetana, S. Toepfl, V. Heinz. 2020. Modularity of insect production and processing as a path to efficient and sustainable food waste treatment. https://doi.org/10.1016/j.jclepro.2019.119248
- I. Gelincek, G. Yamaner. 2020. An investigation on the gamete quality of Black Sea trout (Salmo trutta labrax) broodstock fed with mealworm (Tenebrio molitor). https://doi.org/10.1111/are.14581
- C.Q. Liu, J. Masri, V. Perez, C. Maya, J. Zhao. 2020. Growth Performance and Nutrient Composition of Mealworms (Tenebrio Molitor) Fed on Fresh Plant Materials-Supplemented Diets. https://doi.org/10.3390/foods9020151
- N. Gianotten, L. Soetemans, L. Bastiaens. 2020. Agri-Food Side-Stream Inclusions in the Diet of Alphitobius diaperinus Part 1: Impact on Larvae Growth Performance Parameters. https://doi.org/10.3390/insects11020079
- A. Benzertiha, B. Kieronczyk, P. Kolodziejski, E. Pruszynska-Oszmalek, M. Rawski, D. Jozefiak, A. Jozefiak. 2020. Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. https://doi.org/10.3382/ps/pez450
- A. Gravel, A. Doyen. 2020. The use of edible insect proteins in food: Challenges and issues related to their functional properties. https://doi.org/10.1016/j.ifset.2019.102272
- L. Selaledi, C.A. Mbajiorgu, M. Mabelebele. 2020. The use of yellow mealworm (T. molitor) as alternative source of protein in poultry diets: a review. https://doi.org/10.1007/s11250-019-02033-7
- L. Francuski, W. Jansen, L.W. Beukeboom. 2020. Effect of temperature on egg production in the common housefly. https://doi.org/10.1111/eea.12912
- M. Roffeis, E.C. Fitches, M.E. Wakefield, J. Almeida, T.R.A. Valada, E. Devic, N. Kone, M. Kenis, S. Nacambo, G.K.D. Koko, E. Mathijs, W.M.J. Achten, B. Muys. 2020. Ex-ante life cycle impact assessment of insect based feed production in West Africa. https://doi.org/10.1016/j.agsy.2019.102710
- C.D. Miranda, J.A. Cammack, J.K. Tomberlin. 2020. Life-history traits of house fly, Musca domestica L. (Diptera: Muscidae), reared on three manure types. https://doi.org/10.3920/JIFF2019.0001
- F.G.T. Mbhele, C.M. Mnisi, V. Mlambo. 2020. A Nutritional Evaluation of Insect Meal as a Sustainable Protein Source for Jumbo Quails: Physiological and Meat Quality Responses. https://doi.org/10.3390/su11236592
- M. Gold, C.M. Cassar, C. Zurbrügg, M. Kreuzer, S. Boulos, S. Diener, A. Mathys. 2019. Biowaste treatment with black soldier fly larvae: Increasing performance through the formulation of biowastes based on protein and carbohydrates. https://doi.org/10.1016/j.wasman.2019.10.036
- I. Biasato, I. Ferrocino, E. Grego, S. Dabbou, F. Gai, L. Gasco, L. Cocolin, M.T. Capucchio, A. Schiavone. 2019. Gut Microbiota and Mucin Composition in Female Broiler Chickens Fed Diets including Yellow Mealworm (Tenebrio molitor, L.). https://doi.org/doi:10.3390/ani9050213
- M. Gariglio, S. Dabbou, M. Crispo, I. Biasato, F. Gai, L. Gasco, F. Piacente, P. Odetti, S. Bergagna, I. Plachà, E. Valle, E. Colombino, M.T. Capucchio, A. Schiavone. 2019. Effects of the Dietary Inclusion of Partially Defatted Black Soldier Fly (Hermetia illucens) Meal on the Blood Chemistry and Tissue (Spleen, Liver, Thymus, and Bursa of Fabricius) Histology of Muscovy Ducks (Cairina moschata domestica). https://doi.org/10.3390/ani9060307
- M. Cullere, A. Schiavone, S. Dabbou, L. Gasco, A. Dalle Zotte. 2019. Meat Quality and Sensory Traits of Finisher Broiler Chickens Fed with Black Soldier Fly (Hermetia Illucens L.) Larvae Fat as Alternative Fat Source. https://doi.org/10.3390/ani9040140
- M. Gariglio, S. Dabbou, I. Biasato, M.T. Capucchio, E. Colombino, F. Hernández, J. Madrid, S. Martínez, F. Gai, C. Caimi, S.B. Oddon, M. Meneguz, A. Trocino, R. Vincenzi, L. Gasco, A. Schiavone. 2019. Nutritional effects of the dietary inclusion of partially defatted Hermetia illucens larva meal in Muscovy duck. https://doi.org/10.1186/s40104-019-0344-7
- H.J. Fisher, S.A. Collins, C. Hanson, B. Mason, S.M. Colombo, D.M. Anderson. 2019. Black solider fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar), aquaculture. https://doi.org/10.1016/j.aquaculture.2020.734978
- U. Elahi, J. Wang, Y. Ma, S. Wu, J. Wu, G. Qi, H. Zhang. 2020. Evaluation of Yellow Mealworm Meal as a Protein Feedstuff in the Diet of Broiler Chicks. https://doi.org/doi:10.3390/ani10020224
- J. Sypniewski, B. Kierończyk, A. Benzertiha, Z. Mikołajczak, E. Pruszyńska-Oszmałek, P. Kołodziejski, M. Sassek, M. Rawski, W. Czekała, D. Józefiak. 2020. Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: effect on performance, digestibility, microbial community, immune and physiological status and final product quality. https://doi.org/10.1080/00071668.2020.1716302
- I. Biasato, I. Ferrocino, S. Dabbou, R. Evangelista, F. Gai, L. Gasco, L. Cocolin, M.T. Capucchio, A. Schiavone. 2020. Black soldier fly and gut health in broiler chickens: insights into the relationship between cecal microbiota and intestinal mucin composition. https://doi.org/10.1186/s40104-019-0413-y
- C. Caimi, L. Gasco, I. Biasato, V. Malfatto, K. Varello, M. Prearo, P. Pastorino, M.C. Bona, D.R. Francese, A. Schiavone, A.C. Elia, A.J.M. Dörr, F. Gai. 2020. Could Dietary Black Soldier Fly Meal Inclusion Affect the Liver and Intestinal Histological Traits and the Oxidative Stress Biomarkers of Siberian Sturgeon (Acipenser baerii) Juveniles? https://doi.org/10.3390/ani10010155
- L. Hoffmann, M. Rawski, S. Nogales-Merida, J. Mazurkiewicz. 2020. Dietary inclusion of Tenebrio molitor meal in sea trout larvae rearing: effects on fish growth performance, survival, condition, and GIT and liver enzymatic activity. https://doi.org/10.2478/aoas-2020-0002
- L. Star, T. Arsiwalla, F. Molist, R. Leushuis, M. Dalim, A. Paul. 2020. Gradual Provision of Live Black Soldier Fly (Hermetia illucens) Larvae to Older Laying Hens: Effect on Production Performance, Egg Quality, Feather Condition and Behavior. https://doi.org/10.3390/ani10020216
- G. Chemello, M. Renna, C. Caimi, I. Guerreiro, A. Oliva-Teles, P. Enes, I. Biasato, A. Schiavone, F. Gai, L. Gasco. 2020. Partially Defatted Tenebrio molitor Larva Meal in Diets for Grow-Out Rainbow Trout, Oncorhynchus mykiss (Walbaum): Effects on Growth Performance, Diet Digestibility and Metabolic esponses. https://doi.org/10.3390/ani10020229
- Y. Li, T.M. Kortner, E.M. Chikwati, I. Belghit, E.J. Lock, Å. Krogdahl. 2020. Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmosalar). https://doi.org/10.1016/j.aquaculture.2020.734967
- S. Ites, S. Smetana, S. Toepfl, V. Heinz. 2020. Modularity of insect production and processing as a path to efficient and sustainable food waste treatment. https://doi.org/10.1016/j.jclepro.2019.119248
- A.J. da Silva Lucas, L.M. de Oliveira, M. da Rocha, C. Prentice. 2020. Edible insects: An alternative of nutritional, functional and bioactive compounds. https://doi.org/10.1016/j.foodchem.2019.126022
- L. Bruni, I. Belghit, E.J. Lock, G. Secci, C. Taiti, G. Parisi. 2020. Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.).
- W. Peng, F. Lu, L.P. Hao, H. Zhang, L.M. Shao, P.J. He. 2020. Digestate management for high-solid anaerobic digestion of organic wastes: A review.
- I. Guerreiro, C. Castro, B. Antunes, F. Coutinho, F. Rangel, A. Couto, C.R. Serra, H. Peres, P. Pousao-Ferreira, E. Matos, L. Gasco, F. Gai, G. Corraze, A. Oliva-Teles, P. Enes. 2020. Catching black soldier fly for meagre: Growth, whole-body fatty acid profile and metabolic responses.
- P. Bulak, K. Proc, M. Pawlowska, A. Kasprzycka, W. Berus, A. Bieganowski. 2020. Biogas generation from insects breeding post production wastes.
- J.N. del Hierro, A. Gutierrez-Docio, P. Otero, G. Reglero, D. Martin. 2020. Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor.
- S.W. Przemieniecki, A. Kosewska, S. Ciesielski, O. Kosewska. 2020. Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste.
- A. Cappelli, N. Oliva, G. Bonaccorsi, C. Lorini, E. Cini. 2020. Assessment of the rheological properties and bread characteristics obtained by innovative protein sources (Cicer arietinum, Acheta domesticus, Tenebrio moitor): Novel food or potential improvers for wheat flour?
- A. Giannetto, S. Oliva, C.F.C. Lanes, F.D. Pedron, D. Savastano, C. Baviera, V. Parrino, G. Lo Paro, N.C. Spano, T. Cappello, M. Maisano, A. Mauceri, S. Fasulo. 2020. Hermetia illucens (Diptera: Stratiomydae) larvae and prepupae: Biomass production, fatty acid profile and expression of key genes involved in lipid metabolism.
- V. Grossule, M.C. Lavagnolo. 2020. The treatment of leachate using Black Soldier Fly (BSF) larvae: Adaptability and resource recovery testing.
- C. Delicato, J.J. Schouteten, K. Dewettinck, X. Gellynck, D.A. Tzompa-Sosa. 2020. Consumers’ perception of bakery products with insect fat as partial butter replacement.
- D. Alvarez, K.A. Wilkinson, M. Treilhou, N. Tene, D. Castillo, M. Sauvain. 2020. Prospecting Peptides Isolated From Black Soldier Fly (Diptera: Stratiomyidae) With Antimicrobial Activity Against Helicobacter pylori (Campylobacterales: Helicobacteraceae).
- T.L. Wang, Q. Shen, W.L. Feng, C.W. Wang, F. Yang. 2020. Aqueous ethyl acetate as a novel solvent for the degreasing of black soldier fly (Hermetia illucens L.) larvae: degreasing rate, nutritional value evaluation of the degreased meal, and thermal properties.
- A. Isibika, B. Vinneras, O. Kibazohi, C. Zurbrugg, C. Lalander. 2020. Pre-treatment of banana peel to improve composting by black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae.
- C. Caimi, M. Renna, C. Lussiana, A. Bonaldo, M. Gariglio, M. Meneguz, S. Dabbou, A. Schiavone, F. Gai, A.C. Elia, M. Prearo, L. Gasco. 2019. First insights on Black Soldier Fly (Hermetia illucens L.) larvae meal dietary administration in Siberian sturgeon (Acipenser baerii Brandt) juveniles.