Latest Scientific Publications

  • F.C. Yang, J.K. Tomberlin, H.R. Jordan. 2021. Starvation Alters Gut Microbiome in Black Soldier Fly (Diptera: Stratiomyidae) Larvae. https://doi.org/10.3389/fmicb.2021.601253
  • L.Y. Dong, R.M.C. Ariens, A.H.P. America, A. Paul, T. Veldkamp, J.J. Mes, H.J. Wichers, C. Govers. 2021. Clostridium perfringens suppressing activity in black soldier fly protein preparations. https://doi.org/10.1016/j.lwt.2021.111806
  • J.B. Zhang, J. Zhang, J.H. Li, J.K. Tomberlin, X.P. Xiao, K.U. Rehman, M.M. Cai, L.Y. Zheng, Z.N. Yu. 2021. Black soldier fly: A new vista for livestock and poultry manure management. https://doi.org/10.1016/S2095-3119(20)63423-2
  • N.A.A. Jalil, S.H. Abdullah, I.K. Ahmed, N.E.A. Basri, Z.S. Mohamed. 2021. Decomposition of food waste from protein and carbohydrate sources by black soldier fly larvae, Hermetia illucens L. https://doi.org/10.22438/jeb/42/3(SI)/JEB-04
  • Dorper, T. Veldkamp, M. Dicke. 2021. Use of black soldier fly and house fly in feed to promote sustainable poultry production. https://doi.org/10.3920/JIFF2020.0064
  • A. Prasetya, R. Darmawan, T.L.B. Araujo, H.T.B.M. Petrus, F.A. Setiawan. 2021. A Growth Kinetics Model for Black Soldier Fly (Hermetia illucens) Larvae. https://doi.org/10.14716/ijtech.v12i1.4148
  • Purkayastha, S. Sarkar. 2021. Sustainable waste management using black soldier fly larva: a review. https://doi.org/10.1007/s13762-021-03524-7
  • Zhang, Z.H. Shi, Z.H. Gao, Y.T. Wen, W.Q. Wang, W. Liu, X.P. Wang, F. Zhu. 2021. Identification of three metallothioneins in the black soldier fly and their functions in Cd accumulation and detoxification. https://doi.org/10.1016/j.envpol.2021.117146
  • T.A. Freel, A. McComb, E.A. Koutsos. 2021. Digestibility and safety of dry black soldier fly larvae meal and black soldier fly larvae oil in dogs. https://doi.org/10.1093/jas/skab047
  • L.H. Lu, Q. Wan, Y.L. Xu, H.L. Shen, M.Y. Yang. 2021. Proteomic Study Reveals Major Pathways Regulating the Development of Black Soldier Fly. https://doi.org/10.1021/acs.jproteome.0c00736
  • A.V. Elangovan, A. Udayakumar, M. Saravanakumar, V.B. Awachat, M. Mohan, M.S. Yandigeri, S. Krishnan, A. Mech, S.B.N. Rao, K. Giridhar, R. Bhatta. 2021. Effect of black soldier fly, Hermetia illucens (Linnaeus) prepupae meal on growth performance and gut development in broiler chicken. https://doi.org/10.1007/s42690-020-00377-4
  • A. Richardson, J. Dantas-Lima, M. Lefranc, M. Walraven. 2021. Effect of a Black Soldier Fly Ingredient on the Growth Performance and Disease Resistance of Juvenile Pacific White Shrimp (Litopenaeus vannamei). https://doi.org/10.3390/ani11051450
  • N. Matin, P.L. Utterback, C.M. Parsons. 2021. Phosphorus digestibility and relative phosphorus bioavailability in two dried black soldier fly larvae meals and a defatted black soldier fly larvae meal in broiler chickens. https://doi.org/10.1016/j.psj.2021.101221
  • Ido, M.F.Z. Ali, T. Takahashi, C. Miura, T. Miura. 2021. Growth of Yellowtail (Seriola quinqueradiata) Fed on a Diet Including Partially or Completely Defatted Black Soldier Fly (Hermetia illucens) Larvae Meal. https://doi.org/10.3390/insects12080722
  • J.E. Higa, M.B. Ruby, P. Rozin. 2021. Americans ‘ acceptance of black soldier fly larvae as food for themselves. https://doi.org/10.1016/j.foodqual.2020.104119
  • Jadhav, L. Milesh, T. Mathew, R. Madhu, Raghavendra, Maruti, S. Haider, R.K. Kushwaha, A. David. 2021. Black Soldier Fly/Larvae: A Weapon for Solid Waste Management and Alternative Feed for Poultry and Aquatic Industries. https://doi.org/10.22376/ijpbs/lpr.2020.10.5.L113-120
  • Y.S. Lin, S.H. Liang, W.L. Lai, J.X. Lee, Y.P. Wang, Y.T. Liu, S.H. Wang, M.H. Lee. 2021. Sustainable Extraction of Chitin from Spent Pupal Shell of Black Soldier Fly. https://doi.org/10.3390/pr9060976
  • K. Zlotko, A. Wasko, D.M. Kaminski, I. Budziak-Wieczorek, P. Bulak, A. Bieganowski. 2021. Isolation of Chitin from Black Soldier Fly (Hermetia illucens) and Its Usage to Metal Sorption. https://doi.org/10.3390/polym13050818
  • R. Menino, F. Felizes, M.A. Castelo-Branco, P. Fareleira, O. Moreira, R. Nunes, D. Murta. 2021. Agricultural value of Black Soldier Fly larvae frass as organic fertilizer on ryegrass. https://doi.org/10.1016/j.heliyon.2020.e05855
  • S. Mahmood, C. Zurbrugg, A.B. Tabinda, A. Ali. 2021. Sustainable Waste Management at Household Level with Black Soldier Fly Larvae (Hermetia illucens). https://doi.org/10.3390/su13179722
  • R. Axelrod, L.P. Miner, J.S. VanderGheynst, C.W. Simmons, J.D. Fernandez-Bayo. 2021. Soil Application of Almond Residue Biomass Following Black Soldier Fly Larvae Cultivation. https://doi.org/10.3389/fsufs.2021.664635
  • I. Hopkins, L.P. Newman, H. Gill, J. Danaher. 2021. The Influence of Food Waste Rearing Substrates on Black Soldier Fly Larvae Protein Composition: A Systematic Review. https://doi.org/10.3390/insects12070608
  • S. Ebeneezar, D.L. Prabu, C.S. Tejpal, N.S. Jeena, R. Summaya, S. Chandrasekar, P. Sayooj, P. Vijayagopal. 2021. Nutritional evaluation, bioconversion performance and phylogenetic assessment of black soldier fly (Hermetia illucens, Linn. 1758) larvae valorized from food waste. https://doi.org/10.1016/j.eti.2021.101783
  • N. Nkomo, A.O. Odindo, W. Musazura, R. Missengue. 2021. Optimising pyrolysis conditions for high-quality biochar production using black soldier fly larvae faecal-derived residue as feedstock. https://doi.org/10.1016/j.heliyon.2021.e07025
  • C.Y. Wong, K. Kiatkittipong, W. Kiatkittipong, J.W. Lim, M.K. Lam, T.Y. Wu, P.L. Show, H. Daud, P.S. Goh, M. Sakuragi, Elfis. 2021. Rhizopus oligosporus-Assisted Valorization of Coconut Endosperm Waste by Black Soldier Fly Larvae for Simultaneous Protein and Lipid to Biodiesel Production. https://doi.org/10.3390/pr9020299
  • L.S. Queiroz, M. Regnard, F. Jessen, M.A. Mohammadifar, J.J. Sloth, H.O. Petersen, F. Ajalloueian, C.M.C. Brouzes, W. Fraihi, H. Fallquist, A.F. de Carvalho, F. Casanova. 2021. Physico-chemical and colloidal properties of protein extracted from black soldier fly (Hermetia illucens) larvae. https://doi.org/10.1016/j.ijbiomac.2021.07.081
  • A. Parodi, W.J.J. Gerrits, J.J.A. Van Loon, I.J.M. De Boer, A.J.A. Aarnink, H.H.E. Van Zanten. 2021. Black soldier fly reared on pig manure: Bioconversion efficiencies, nutrients in the residual material, greenhouse gas and ammonia emissions. https://doi.org/10.1016/j.wasman.2021.04.001
  • E. Gorrens, L. Van Moll, L. Frooninckx, J. De Smet, L. Van Campenhout. 2021. Isolation and Identification of Dominant Bacteria From Black Soldier Fly Larvae (Hermetia illucens) Envisaging Practical Applications. https://doi.org/10.3389/fmicb.2021.665546
  • A.S. Yuwono, I.G. Permana, L. Nurulalia, P.D. Mentari. 2021. Decomposition Characteristics of Selected Solid Organic Wastes by Black Soldier Fly (BSF) Larvae as Affected by Temperature Regimes. https://doi.org/10.15244/pjoes/131865
  • S.K. Awasthi, S.Y. Qin, H.M. Liu, M.K. Awasthi, Y.W. Zhou, M.N. Jiao, A. Pandey, S. Varjani, Z.W. Zhang. 2021. Conversion food waste and sawdust into compost employing black soldier fly larvae (diptera: Stratiomyidae) under the optimized condition. https://doi.org/10.1016/j.chemosphere.2021.129931
  • K. Magee, J. Halstead, R. Small, I. Young. 2021. Valorisation of Organic Waste By-Products Using Black Soldier Fly (Hermetia illucens) as a Bio-Convertor. https://doi.org/10.3390/su13158345
  • G. English, G. Wanger, S.M. Colombo. 2021. A review of advancements in black soldier fly (Hermetia illucens) production for dietary inclusion in salmonid feeds. https://doi.org/10.1016/j.jafr.2021.100164
  • K. Peng, W.Y. Mo, H.F. Xiao, G.X. Wang, Y.H. Huang. 2021. Effects of black soldier fly pulp on growth performance, histomorphology and lipid metabolism gene expression of Micropterus salmoides. https://doi.org/10.1016/j.aqrep.2021.100737
  • C.Y. Wong, K. Kiatkittipong, W. Kiatkittipong, S.K.O. Ntwampe, M.K. Lam, P.S. Goh, C.K. Cheng, M.J.K. Bashir, J.W. Lim. 2021. Black Soldier Fly Larval Valorization Benefitting from Ex-Situ Fungal Fermentation in Reducing Coconut Endosperm Waste. https://doi.org/10.3390/pr9020275
  • D. Tegtmeier, S. Hurka, P. Kluber, K. Brinkrolf, P. Heise, A. Vilcinskas. 2021. Cottonseed Press Cake as a Potential Diet for Industrially Farmed Black Soldier Fly Larvae Triggers Adaptations of Their Bacterial and Fungal Gut Microbiota. https://doi.org/10.3389/fmicb.2021.634503
  • D. Hwang, C.H. Lim, S.H. Lee, T.W. Goo, E.Y. Yun. 2021. Effect of Feed Containing Hermetia illucens Larvae Immunized by Lactobacillus plantarum Injection on the Growth and Immunity of Rainbow Trout (Oncorhynchus mykiss). https://doi.org/10.3390/insects12090801
  • S. Rimoldi, M. Antonini, L. Gasco, F. Moroni, G. Terova. 2021. Intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) may be improved by feeding a Hermetia illucens meal/low-fishmeal diet. https://doi.org/10.1007/s10695-020-00918-1
  • C.C. Liu, C.W. Wang, H.Y. Yao, S.J. Chapman. 2021. Pretreatment is an important method for increasing the conversion efficiency of rice straw by black soldier fly larvae based on the function of gut microorganisms. https://doi.org/10.1016/j.scitotenv.2020.144118
  • T.N. Generalovic, S.A. McCarthy, I.A. Warren, J.M.D. Wood, J. Torrance, Y. Sims, M. Quail, K. Howe,  M. Pipan, R. Durbin, C.D. Jiggins. 2021. A high-quality, chromosome-level genome assembly of the Black Soldier Fly (Hermetia illucens L.). https://doi.org/10.1093/g3journal/jkab085
  • L.W. Bessa, E. Pieterse, J. Marais, K. Dhanani, L.C. Hoffman. 2021. Food Safety of Consuming Black Soldier Fly (Hermetia illucens) Larvae: Microbial, Heavy Metal and Cross-Reactive Allergen Risks. https://doi.org/10.3390/foods10081934
  • R.R. Ramzy, M.A. El-Dakar, D. Wang, H. Ji. 2021. Conversion Efficiency of Lignin-Rich Olive Pomace to Produce Nutrient-Rich Insect Biomass by Black Soldier Fly Larvae, Hermetia illucens. https://doi.org/10.1007/s12649-021-01546-3
  • R. Raksasat, K. Kiatkittipong, W. Kiatkittipong, C.Y. Wong, M.K. Lam, Y.C. Ho, W.D. Oh, I.W.K. Suryawan, J.W. Lim. 2021. Blended Sewage Sludge-Palm Kernel Expeller to Enhance the Palatability of Black Soldier Fly Larvae for Biodiesel Production. https://doi.org/10.3390/pr9020297
  • P.H. Patterson, N. Acar, A.D. Ferguson, L.D. Trimble, H.B. Sciubba, E.A. Koutsos. 2021. The impact of dietary Black Soldier Fly larvae oil and meal on laying hen performance and egg quality. https://doi.org/10.1016/j.psj.2021.101272
  • Z.N. Yuan, Y. Ma, B.J. Tang, R.X. Zeng, Q. Zhou. 2021. Intestinal microbiota and functional characteristics of black soldier fly larvae (Hermetia illucens). https://doi.org/10.1186/s13213-021-01626-8
  • N. Wu, J.Q. Liang, X.B. Wang, S.Y. Xie, X.Y. Xu. 2021. Copper stimulates the incidence of antibiotic resistance, metal resistance and potential pathogens in the gut of black soldier fly larvae. https://doi.org/10.1016/j.jes.2021.02.008
  • N. Wu, X.B. Wang, Z.C. Yan, X.Y. Xu, S.Y. Xie, J.Q. Liang. 2021. Transformation of pig manure by passage through the gut of black soldier fly larvae (Hermetia illucens): Metal speciation, potential pathogens and metal-related functional profiling. https://doi.org/10.1016/j.ecoenv.2021.111925
  • H.A. Adebayo, K.A. Kemabonta, S.S. Ogbogu, M.C. Elechi, M.T. Obe. 2021. Comparative assessment of developmental parameters, proximate analysis and mineral compositions of black soldier fly (Hermetia illucens) prepupae reared on organic waste substrates. https://doi.org/10.1007/s42690-020-00404-4
  • W.L. Xu, L. Xu, X. Liu, S. He, Y.R. Ji, W.F. Wang, F.H. Wang. 2021. An Effective Strategy for the Production of Lauric Acid-Enriched Monoacylglycerol via Enzymatic Glycerolysis from Black Soldier Fly (Hermetia illucens) Larvae (BSFL) Oil. https://doi.org/10.1007/s12010-021-03565-1
  • Dabbou, A. Lauwaerts, I. Ferrocino, I. Biasato, F. Sirri, M. Zampiga, S. Bergagna, G. Pagliasso, M. Gariglio, E. Colombino, C.G. Narro, F.C. Gai, M.T. Capucchio, L. Gasco, L. Cocolin, A. Schiavone. 2021. Modified Black Soldier Fly Larva Fat in Broiler Diet: Effects on Performance, Carcass Traits, Blood Parameters, Histomorphological Features and Gut Microbiota. https://doi.org/10.3390/ani11061837
  • E.K. Sumbule, M.K. Ambula, I.M. Osuga, J.G. Changeh, D.M. Mwangi, S. Subramanian, D. Salifu, P.A.O. Alaru, M. Githinji, J.J.A. van Loon, M. Dicke, C.M. Tanga. 2021. Cost-Effectiveness of Black Soldier Fly Larvae Meal as Substitute of Fishmeal in Diets for Layer Chicks and Growers. https://doi.org/10.3390/su13116074
  • M. Shumo, F.M. Khamis, F.L. Ombura, C.M. Tanga, K.K.M. Fiaboe, S. Subramanian, S. Ekesi, O.K. Schluter, A. van Huis, C. Borgemeister. 2021. A Molecular Survey of Bacterial Species in the Guts of Black Soldier Fly Larvae (Hermetia illucens) Reared on Two Urban Organic Waste Streams in Kenya. https://doi.org/10.3389/fmicb.2021.687103
  • M.A. El-Dakar, R.R. Ramzy, D. Wang, H. Ji. 2021. Sustainable management of Se-rich silkworm residuals by black soldier flies larvae to produce a high nutritional value and accumulate omega-3 PUFA. https://doi.org/10.1016/j.wasman.2021.01.040
  • F. Takakuwa, R. Tanabe, S. Nomura, T. Inui, S. Yamada, A. Biswas, H. Tanaka. 2021. Availability of black soldier fly meal as an alternative protein source to fish meal in red sea bream (Pagrus major, Temminck & Schlegel) fingerling diets. https://doi.org/10.1111/are.15550
  • X.B. Wang, N. Wu, R.J. Cai, W.N. Geng, X.Y. Xu. 2021. Changes in speciation, mobility and bioavailability of Cd, Cr and As during the transformation process of pig manure by black soldier fly larvae (Hermetia illucens). https://doi.org/10.1016/S2095-3119(20)63333-0
  • D. Tegtmeier, S. Hurka, S. Mihajlovic, M. Bodenschatz, S. Schlimbach, A. Vilcinskas. 2021. Culture-Independent and Culture-Dependent Characterization of the Black Soldier Fly Gut Microbiome Reveals a Large Proportion of Culturable Bacteria with Potential for Industrial Applications. https://doi.org/10.3390/microorganisms9081642
  • J.J. Wang, M. Jousse, J. Jayakumar, A. Fernandez-Arteaga, S. De Lamo-Castellvi, M. Ferrando, C. Guell. 2021. Black Soldier Fly (Hermetia illucens) Protein Concentrates as a Sustainable Source to Stabilize O/W Emulsions Produced by a Low-Energy High-Throughput Emulsification Technology. https://doi.org/10.3390/foods10051048
  • S. Mackillop, C. Keitel, T. Latty. 2021. Beyond Hermetia illucens: An investigation of the garden soldier fly Exaireta spinigera as a potential bioconverter of food waste. https://doi.org/10.1111/jen.12936
  • A. Lecocq, L. Joosten, E. Schmitt, J. Eilenberg, A.B. Jensen. 2021. Hermetia illucens adults are susceptible to infection by the fungus Beauveria bassiana in laboratory experiments. https://doi.org/10.3920/JIFF2020.0042
  • X.X. Xu, H. Ji, I. Belghit, N.S. Liland, W.Y. Wu, X.Q. Li. 2021. Effects of black soldier fly oil rich in n-3 HUFA on growth performance, metabolism and health response of juvenile mirror carp (Cyprinus carpio var. specularis). https://doi.org/10.1016/j.aquaculture.2020.736144
  • M. Crosbie, C.L. Zhu, N.A. Karrow, L.A. Huber. 2021. The effects of partially replacing animal protein sources with full fat black soldier fly larvae meal (Hermetia illucens) in nursery diets on growth performance, gut morphology, and immune response of pigs. https://doi.org/10.1093/tas/txab057
  • A.O. Anyega, N.K. Korir, D. Beesigamukama, G.J. Changeh, K. Nkoba, S. Subramanian, J.J.A. van Loon, M. Dicke, C.M. Tanga. 2021. Black Soldier Fly-Composted Organic Fertilizer Enhances Growth, Yield, and Nutrient Quality of Three Key Vegetable Crops in Sub-Saharan Africa. https://doi.org/10.3389/fpls.2021.680312
  • N. Tippayadara, M.A.O. Dawood, P. Krutmuang, S.H. Hoseinifar, H. Van Doan, M. Paolucci. 2021. Replacement of Fish Meal by Black Soldier Fly (Hermetia illucens) Larvae Meal: Effects on Growth, Haematology, and Skin Mucus Immunity of Nile Tilapia, Oreochromis niloticus. https://doi.org/10.3390/ani11010193
  • Y. Lu, S.Y. Zhang, S.B. Sun, M.H. Wu, Y.M. Bao, H.Y. Tong, M.M. Ren, N. Jin, J.Q. Xu, H. Zhou, W.P. Xu. 2021. Effects of Different Nitrogen Sources and Ratios to Carbon on Larval Development and Bioconversion Efficiency in Food Waste Treatment by Black Soldier Fly Larvae (Hermetia illucens). https://doi.org/10.3390/insects12060507
  • A. Mouithys-Mickalad, N.M. Tome, T. Boogaard, A. Chakraborty, D. Serteyn, K. Aarts, A. Paul. 2021. Unlocking the Real Potential of Black Soldier Fly (Hermetia illucens) Larvae Protein Derivatives in Pet Diets. https://doi.org/10.3390/molecules26144216
  • H.M.R. Abdel-Latif, M. Abdel-Tawwab, R.H. Khalil, A.A. Metwally, M.S. Shakweer, H.A. Ghetas, M.A. Khallaf. 2021. Black soldier fly (Hermetia illucens) larvae meal in diets of European seabass: Effects on antioxidative capacity, non-specific immunity, transcriptomic responses, and resistance to the challenge with Vibrio alginolyticus. https://doi.org/10.1016/j.fsi.2021.01.013
  • C.H. Kim, J. Ryu, J. Lee, K. Ko, J.Y. Lee, K.Y. Park, H. Chung. 2021. Use of Black Soldier Fly Larvae for Food Waste Treatment and Energy Production in Asian Countries: A Review. https://doi.org/10.3390/pr9010161
  • V. Kumar, F.J. Fawole, N. Romano, M.S. Hossain, S.N. Labh, K. Overturf, B.C. Small. 2021. Insect (black soldier fly, Hermetia illucens) meal supplementation prevents the soybean meal-induced intestinal enteritis in rainbow trout and health benefits of using insect oil. https://doi.org/10.1016/j.fsi.2020.12.008
  • K. Franks, E. Kooienga, M. Sanders, K. Pendarvis, F. Yang, J.K. Tomberlin, H.R. Jordan. 2021. The effect of Rhodococcus rhodochrous supplementation on black soldier fly (Diptera: Stratiomyidae) development, nutrition, and waste conversion. https://doi.org/10.3920/JIFF2020.0033
  • D. Nuvoli, G. Montevecchi, F. Lovato, F. Masino, M. van der Borght, M. Messori, A. Antonelli. 2021. Protein films from black soldier fly (Hermetia illucens, Diptera: Stratiomyidae) prepupae: effect of protein solubility and mild crosslinking. https://doi.org/10.1002/jsfa.11091
  • Y.K. Chen, S.Y. Chi, S. Zhang, X.H. Dong, Q.H. Yang, H.Y. Liu, B.P. Tan, S.W. Xie. 2021. Evaluation of the Dietary Black Soldier Fly Larvae Meal (Hermetia illucens) on Growth Performance, Intestinal Health, and Disease Resistance to Vibrio parahaemolyticus of the Pacific White Shrimp (Litopenaeus vannamei). https://doi.org/10.3389/fmars.2021.706463
  • L. Van Campenhout, D. Lachi, D. Vandeweyer. 2021. Potential of Fermentation and Vacuum Packaging Followed by Chilling to Preserve Black Soldier Fly Larvae (Hermetia illucens). https://doi.org/10.3390/insects12080714
  • S.H. Park, H.R. Kim, Y.C. Baek, C.H. Ryu, S.Y. Ji, J.Y. Jeong, M. Kim, H. Jung, B. Kim. 2021. Effects of Dietary Inclusion Level of Microwave-Dried and Press-Defatted Black Soldier Fly (Hermetia illucens) Larvae Meal on Productive Performance, Cecal Volatile Fatty Acid Profile, and Egg Quality in Laying Hens. https://doi.org/10.3390/ani11061486
  • P. Borel, F. Hammaz, L. Morand-Laffargue, B. Creton, C. Halimi, D. Sabatier, C. Desmarchelier. 2021. Using black soldier fly larvae reared on fruits and vegetables waste as a sustainable dietary source of provitamin a carotenoids. https://doi.org/10.1016/j.foodchem.2021.129911
  • C. Kaya, T.N. Generalovic, G. Stahls, M. Hauser, A.C. Samayoa, C.G. Nunes-Silva, H. Roxburgh, J. Wohlfahrt, E.A. Ewusie, M. Kenis, Y. Hanboonsong, J. Orozco, N. Carrejo, S. Nakamura, L. Gasco, S. Rojo, C.M. Tanga, R. Meier, C. Rhode, C.J. Picard, C.D. Jiggins, F. Leiber, J.K. Tomberlin, M. Hasselmann, W.U. Blanckenhorn, M. Kapun, C. Sandrock. 2021. Global population genetic structure and demographic trajectories of the black soldier fly, Hermetia illucens. https://doi.org/10.1186/s12915-021-01029-w
  • M. Heuel, C. Sandrock, F. Leiber, A. Mathys, M. Gold, C. Zurbrugg, I.D.M. Gangnat, M. Kreuzer, M. Terranova. 2021. Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. https://doi.org/10.1016/j.psj.2021.101034
  • J.A. Cammack, C.D. Miranda, H.R. Jordan, J.K. Tomberlin. 2021. Upcycling of manure with insects: current and future prospects. https://doi.org/10.3920/JIFF2020.0093
  • P. Weththasinghe, L. Lagos, M. Cortes, J.O. Hansen, M. Overland. 2021. Dietary Inclusion of Black Soldier Fly (Hermetia Illucens) Larvae Meal and Paste Improved Gut Health but Had Minor Effects on Skin Mucus Proteome and Immune Response in Atlantic Salmon (Salmo Salar). https://doi.org/10.3389/fimmu.2021.599530
  • N. Egnew, N. Romano, H. Fischer, A.K. Sinha. 2021. Purging black solider fly larvae (Hermetia illucens) compromises their nutritive value as a feedstuff. https://doi.org/10.1007/s42690-021-00491-x
  • S.B. Oddon, I. Biasato, A. Imarisio, M. Pipan, D. Dekleva, E. Colombino, M.T. Capucchio, M. Meneguz, B. Stefania, R. Barbero, M. Gariglio, S. Dabbou, E. Fiorilla, L. Gasco, A. Schiavone. 2021. Black soldier fly and yellow mealworm live larvae for broiler chickens: Effects on bird performance and health status. https://doi.org/10.1111/jpn.13567
  • N. Meijer, T. de Rijk, J.J.A. van Loon, L. Zoet, H.J. Van der Fels-Klerx. 2021. Effects of insecticides on mortality, growth and bioaccumulation in black soldier fly (Hermetia illucens) larvae. https://doi.org/10.1371/journal.pone.0249362
  • L. Hoffmann, K.L. Hull, A. Bierman, R. Badenhorst, A.B.E. van der Merwe, C. Rhode. 2021. Patterns of Genetic Diversity and Mating Systems in a Mass-Reared Black Soldier Fly Colony. https://doi.org/10.3390/insects12060480
  • L. Traksele, V. Speiciene, R. Smicius, G. Alencikiene, A. Salaseviciene, G. Garmiene, V. Zigmantaite, R. Grigaleviciute, A. Kucinskas. 2021. Investigation of in vitro and in vivo digestibility of black soldier fly (Hermetia illucens L.) larvae protein. https://doi.org/10.1016/j.jff.2021.104402
  • H. Fischer, N. Romano, A.K. Sinha. 2021. Conversion of Spent Coffee and Donuts by Black Soldier Fly (Hermetia illucens) Larvae into Potential Resources for Animal and Plant Farming. https://doi.org/10.3390/insects12040332
  • R. Mulianda, A. Sofyan, H. Herdian, E.B. Laconi, M. Ridla, W.W. Wardani, A. Jayanegara. 2021. In sacco nutrient degradability of silage containing intact and defatted black soldier fly (Hermetia illucens) larvae. https://doi.org/10.14710/jitaa.46.3.227-235
  • M. Gariglio, S. Dabbou, F. Gai, A. Trocino, G. Xiccato, M. Holodova, L. Gresakova, J. Nery, S.B. Oddon, I. Biasato, L. Gasco, A. Schiavone. 2021. Black soldier fly larva in Muscovy duck diets: effects on duck growth, carcass property, and meat quality. https://doi.org/10.1016/j.psj.2021.101303
  • N.H. Abu Bakar, S.A. Razak, N.M. Taufek, Z. Alias. 2021. Evaluation of black soldier fly (Hermetia illucens) prepupae oil as meal supplementation in diets for red hybrid tilapia (Oreochromis sp.). https://doi.org/10.1007/s42690-020-00398-z
  • N.S. Bekker, S. Heidelbach, S.Z. Vestergaard, M.E. Nielsen, M. Riisgaard-Jensen, E.J. Zeuner, S. Bahrndorff, N.T. Eriksen. 2021. Impact of substrate moisture content on growth and metabolic performance of black soldier fly larvae. https://doi.org/10.1016/j.wasman.2021.04.028
  • A. Fuso, S. Barbi, L.I. Macavei, A.V. Luparelli, L. Maistrello, M. Montorsi, S. Sforza, A. Caligiani. 2021. Effect of the Rearing Substrate on Total Protein and Amino Acid Composition in Black Soldier Fly. https://doi.org/10.3390/foods10081773
  • S.F. Laursen, L.S. Hansen, S. Bahrndorff, H.M. Nielsen, N.K. Noer, D. Renault, G. Sahana, J.G. Sorensen, T.N. Kristensen. 2021. Contrasting Manual and Automated Assessment of Thermal Stress Responses and Larval Body Size in Black Soldier Flies and Houseflies. https://doi.org/10.3390/insects12050380
  • R. Norgren, A. Jonsson, O. Bjorkqvist. 2021. Original article: fermented pulp and paper bio-sludge as feed for black soldier fly larvae. https://doi.org/10.1007/s13399-021-01564-0
  • J. Xia, C.R. Ge, H.Y. Yao. 2021. Antimicrobial Peptides from Black Soldier Fly (Hermetia illucens) as Potential Antimicrobial Factors Representing an Alternative to Antibiotics in Livestock Farming. https://doi.org/10.3390/ani11071937
  • A.F. Ipema, E.A.M. Bokkers, W.J.J. Gerrits, B. Kemp, J.E. Bolhuis. 2021. Providing live black soldier fly larvae (Hermetia illucens) improves welfare while maintaining performance of piglets post-weaning. https://doi.org/10.1038/s41598-021-86765-3
  • C.C. Liu, H.Y. Yao, C.W. Wang. 2021. Black Soldier Fly Larvae Can Effectively Degrade Oxytetracycline Bacterial Residue by Means of the Gut Bacterial Community. https://doi.org/10.3389/fmicb.2021.663972
  • S.J.J. Schreven, H. de Vries, G.D.A. Hermes, H. Smidt, M. Dicke, J.J.A. van Loon. 2021. Relative contributions of egg-associated and substrate-associated microorganisms to black soldier fly larval performance and microbiota. https://doi.org/10.1093/femsec/fiab054
  • M. Laganaro, S. Bahrndorff, N.T. Eriksen. 2021. Growth and metabolic performance of black soldier fly larvae grown on low and high-quality substrates. https://doi.org/10.1016/j.wasman.2020.12.009
  • J.D. Vilela, N.M. Andronicos, M. Kolakshyapati, M. Hilliar, T.Z. Sibanda, N.R. Andrew, R.A. Swick, S. Wilkinson, I. Ruhnke. 2021. Black soldier fly larvae in broiler diets improve broiler performance and modulate the immune system. https://doi.org/10.1016/j.aninu.2020.08.014
  • D. Dzepe, P. Nana, H.M. Kuietche, J.M. Kimpara, O. Magatsing, T. Tchuinkam, R. Djouaka. 2021. Feeding strategies for small-scale rearing black soldier fly larvae (Hermetia illucens) as organic waste recycler. https://doi.org/10.1007/s42452-020-04039-5
  • N.A. Ushakova, S.V. Zinovieva, Z.V. Udalova, A.I. Bastrakov, A.I. Butenko. 2021. The biodisposal of organic waste by larvae of the black soldier fly Hermetia illucens and the possibility of using the formed zoocompost against phytonematodes. https://doi.org/10.25750/1995-4301-2021-2-163-169
  • P.S. Rummel, L. Beule, M. Hemkemeyer, S.A. Schwalb, F. Wichern. 2021. Black Soldier Fly Diet Impacts Soil Greenhouse Gas Emissions From Frass Applied as Fertilizer. https://doi.org/10.3389/fsufs.2021.709993
  • L.A.P. Logan, T. Latty, T.H. Roberts. 2021. Effective bioconversion of farmed chicken products by black soldier fly larvae at commercially relevant growth temperatures. https://doi.org/10.1111/jen.12878
  • H- Fischer, N. Romano. 2021. Fruit, vegetable, and starch mixtures on the nutritional quality of black soldier fly (Hermetia illucens) larvae and resulting frass. https://doi.org/10.3920/JIFF2020.0100
  • S. Song, A.W.L. Ee, J.K.N. Tan, J.C. Cheong, Z. Chiam, S. Arora, W.N. Lam, H.T.W. Tan. 2021. Upcycling food waste using black soldier fly larvae: Effects of further composting on frass quality, fertilising effect and its global warming potential. https://doi.org/10.1016/j.jclepro.2020.125664
  • L. Pinotti, M. Ottoboni. 2021. Substrate as insect feed for bio-mass production. https://doi.org/10.3920/JIFF2020.0110
  • A.A. Soomro, M. Cai, Z.A. Laghari, L. Zheng, K.U. Rehman, X. Xiao, S. Hu, Z. Yu, J. Zhang. 2021. Impact of heat treatment on microbiota of black soldier fly larvae reared on soybean curd residues. https://doi.org/10.3920/JIFF2020.0108
  • G.J. Were, F.G. Irungu, P.N. Ngoda, H. Affognon, S. Ekesi, D. Nakimbugwe, K.K.M. Fiaboe, C.M. Mutungi. 2021. Nutritional and microbial quality of extruded fish feeds containing black soldier fly (Hermetia illucens L) larvae meal as a replacement for fish meal for tilapia (Oreochromis niloticus) and catfish (Clarius gariepinus). https://doi.org/10.1080/10454438.2021.1922327
  • J.D. Vilela, T.I.R.C. Alvarenga, N.R. Andrew, M. McPhee, M. Kolakshyapati, D.L. Hopkins, I. Ruhnke, 2021. Technological Quality, Amino Acid and Fatty Acid Profile of Broiler Meat Enhanced by Dietary Inclusion of Black Soldier Fly Larvae. https://doi.org/10.3390/foods10020297
  • S.K. Kar, D. Schokker, A.C. Harms, L. Kruijt, M.A. Smits, A.J.M. Jansman. 2021. Local intestinal microbiota response and systemic effects of feeding black soldier fly larvae to replace soybean meal in growing pigs. https://doi.org/10.1038/s41598-021-94604-8
  • R. Smets, J. Claes, M. Van der Borght. 2021. On the nitrogen content and a robust nitrogen-to-protein conversion factor of black soldier fly larvae (Hermetia illucens). https://doi.org/10.1007/s00216-021-03595-y
  • I. Opatovsky, T. Vitenberg, A. Jonas-Levi, R. Gutman. 2021. Does Consumption of Baker’s Yeast (Saccharomyces cerevisiae) by Black Soldier Fly (Diptera: Stratiomyidae) Larvae Affect Their Fatty Acid Composition? https://doi.org/10.1093/jisesa/ieab031
  • C.D. Miranda, T.L. Crippen, J.A. Cammack, J.K. Tomberlin. 2021. Black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), and house fly, Musca domestica L. (Diptera: Muscidae), larvae reduce livestock manure and possibly associated nutrients: An assessment at two scales. https://doi.org/10.1016/j.envpol.2021.116976
  • N. Romano, H. Fischer, V. Kumar, S.A. Francis, A.K. Sinha. 2021. Productivity, conversion ability, and biochemical composition of black soldier fly (Hermetia illucens) larvae fed with sweet potato, spent coffee or dough. https://doi.org/10.1007/s42690-021-00532-5
  • T. Popova, E. Petkov, M. Ignatova. 2021. Effect of black soldier fly (Hermetia illucens) meals in the diet on the growth performance and carcass composition in broilers. https://doi.org/10.3920/JIFF2019.0050
  • M.C. Elechi, K.A. Kemabonta, S.S. Ogbogu, I.C. Orabueze, F.A. Adetoro, H.A. Adebayo, T.M. Obe. 2021. Heavy metal bioaccumulation in prepupae of black soldier fly Hermetia Illucens (Diptera: Stratiomyidae) cultured with organic wastes and chicken feed. https://doi.org/10.1007/s42690-021-00427-5
  • B.M. Jones, J.K. Tomberlin. 2021. Effects of adult body size on mating success of the black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae). https://doi.org/10.3920/JIFF2020.0001
  • M. Heuel, M. Kreuzer, C. Sandrock, F. Leiber, A. Mathys, M. Gold, C. Zurbrugg, I.D.M. Gangnat, M. Terranova. 2021. Transfer of Lauric and Myristic Acid from Black Soldier Fly Larval Lipids to Egg Yolk Lipids of Hens Is Low. https://doi.org/10.1002/lipd.12304
  • A. Gougbedji, P. Agbohessou, P.A. Laleye, F. Francis, R.C. Megido. 2021. Technical basis for the small-scale production of black soldier fly, Hermetia illucens (L. 1758), meal as fish feed in Benin. https://doi.org/10.1016/j.jafr.2021.100153
  • S. Lievens, G. Poma, J. De Smet, L. Van Campenhout, A. Covaci, M. Van der Borght. 2021. Chemical safety of black soldier fly larvae (Hermetia illucens), knowledge gaps and recommendations for future research: a critical review. https://doi.org/10.3920/JIFF2020.0081
  • P.S. Bhavsar, G. Dalla Fontana, M. Zoccola. 2021. Sustainable Superheated Water Hydrolysis of Black Soldier Fly Exuviae for Chitin Extraction and Use of the Obtained Chitosan in the Textile Field. https://doi.org/10.1021/acsomega.0c06040
  • Y. Zhang, C.Y. Yang, C.J. Li, Z.C. Xu, P. Peng, C.Y. Xue, J.K. Tomberlin, W.F. Hu, Y.C. Cao. 2021. Black soldier fly (Hermetia illucens L.) larval diet improves CD8(+) lymphocytes proliferation to eliminate chicken coronavirus at an early infection stage. https://doi.org/10.1016/j.vetmic.2021.109151
  • K.B. Barragan-Fonseca, G. Gort, M. Dicke, J.J.A. van Loon. 2021. Nutritional plasticity of the black soldier fly (Hermetia illucens) in response to artificial diets varying in protein and carbohydrate concentrations. https://doi.org/10.3920/JIFF2020.0034
  • R. Smets, P. Goos, J. Claes, M. Van Der Borght. 2021. Optimisation of the lipid extraction of fresh black soldier fly larvae (Hermetia illucens) with 2-methyltetrahydrofuran by response surface methodology. https://doi.org/10.1016/j.seppur.2020.118040
  • A. Franco, C. Scieuzo, R. Salvia, A.M. Petrone, E. Tafi, A. Moretta, E. Schmitt, P. Falabella. 2021. Lipids from Hermetia illucens, an Innovative and Sustainable Source. https://doi.org/10.3390/su131810198
  • S.J.J. Schreven, S. Yener, H.J.F. van Valenberg, M. Dicke, J.J.A. van Loon. 2021. Life on a piece of cake: performance and fatty acid profiles of black soldier fly larvae fed oilseed by-products. https://doi.org/10.3920/JIFF2020.0004
  • S. Jagtap, G. Garcia-Garcia, L. Duong, M. Swainson, W. Martindale. 2021. Codesign of Food System and Circular Economy Approaches for the Development of Livestock Feeds from Insect Larvae. https://doi.org/10.3390/foods10081701
  • G. Galassi, C. Jucker, P. Parma, D. Lupi, G.M. Crovetto, S. Savoldelli, S. Colombini. 2021. /Impact of Agro-industrial Byproducts on Bioconversion, Chemical Composition, in vitro Digestibility, and Microbiota of the Black Soldier Fly (Diptera: Stratiomyidae) Larvae. https://doi.org/10.1093/jisesa/ieaa148
  • T.H. Li, C.R. Zhang, P.F. Che, Y. Ma, L.S. Zang. 2021. Recycling of spent mushroom substrate and food waste: utilisation as feed materials for black soldier fly (Hermetia illucens (L.) Diptera: Stratiomyidae). https://doi.org/10.3920/JIFF2020.0105
  • M.M. Mutisya, M.K. Agbodzavu, J.N. Kinyuru, C.M. Tanga, M. Gicheha, G. Hailu, D. Salifu, Z. Khan, S. Niassy. 2021. Can black soldier fly Desmodium intortum larvae-based diets enhance the performance of Cobb500 broiler chickens and smallholder farmers’ profit in Kenya? https://doi.org/10.1016/j.psj.2020.11.021
  • A. Isibika, B. Vinneras, O. Kibazohi, C. Zurbrugg, C. Lalander. 2021. Co-composting of banana peel and orange peel waste with fish waste to improve conversion by black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae. https://doi.org/10.1016/j.jclepro.2021.128570
  • Klammsteiner, A. Walter, T. Bogataj, C.D. Heussler, B. Stres, F.M. Steiner, B.C. Schlick-Steiner,
  • T. Insam. 2021. Impact of Processed Food (Canteen and Oil Wastes) on the Development of Black Soldier Fly (Hermetia illucens) Larvae and Their Gut Microbiome Functions. https://doi.org/10.3389/fmicb.2021.619112
  • M.A. El-Dakar, R.R. Ramzy, H. Ji. 2021. Influence of substrate inclusion of quail manure on the growth performance, body composition, fatty acid and amino acid profiles of black soldier fly larvae (Hermetia illucens). https://doi.org/10.1016/j.scitotenv.2021.145528
  • N.M. Taufek, J.Z.Y. Lim, N.H. Abu Bakar. 2021. Comparative evaluation of Hermetia illucens larvae reared on different substrates for red tilapia diet: effect on growth and body composition. https://doi.org/10.3920/JIFF2019.0058
  • C.M. Tanga, J.W. Waweru, Y.H. Tola, A.A. Onyoni, F.M. Khamis, S. Ekesi, J.C. Paredes. 2021. Organic Waste Substrates Induce Important Shifts in Gut Microbiota of Black Soldier Fly (Hermetia illucens L.): Coexistence of Conserved, Variable, and Potential Pathogenic Microbes. https://doi.org/10.3389/fmicb.2021.635881
  • A. Abd El-Wahab, L. Meyer, M. Kolln, B. Chuppava, V. Wilke, C. Visscher, J. Kamphues. 2021. Insect Larvae Meal (Hermetia illucens) as a Sustainable Protein Source of Canine Food and Its Impacts on Nutrient Digestibility and Fecal Quality. https://doi.org/10.3390/ani11092525
  • D. Intayung, P. Chundang, S. Srikachar, A. Kovitvadhi. 2021. Ontogenic development of the digestive enzymes and chemical composition of Hermetia illucens larvae of different ages. https://doi.org/10.1111/eea.13063
  • K.S. Lee, E.Y. Yun, T.W. Goo. 2021. Optimization of Feed Components to Improve Hermetia illucens Growth and Development of Oil Extractor to Produce Biodiesel. https://doi.org/10.3390/ani11092573
  • N. Pliantiangtam, P. Chundang, A. Kovitvadhi. 2021. Growth Performance, Waste Reduction Efficiency and Nutritional Composition of Black Soldier Fly (Hermetia illucens) Larvae and Prepupae Reared on Coconut Endosperm and Soybean Curd Residue with or without Supplementation. https://doi.org/10.3390/insects12080682
  • M. Pezzi, C. Scapoli, M. Bharti, M.J. Faucheux, M. Chicca, M. Leis, M.G. Marchetti, E. Mamolini, R. Salvia, P. Falabella, T. Bonacci. 2021. Fine Structure of Maxillary Palps in Adults of Hermetia illucens (Diptera: Stratiomyidae). https://doi.org/10.1093/jme/tjaa251
  • V. Sideris, M. Georgiadou, G. Papadoulis, K. Mountzouris, A. Tsagkarakis. 2021. Effect of Processed Beverage By-Product-Based Diets on Biological Parameters, Conversion Efficiency and Body Composition of Hermetia illucens (L) (Diptera: Stratiomyidae). https://doi.org/10.3390/insects12050475
  • A. Hender, M.A.B. Siddik, J. Howieson, R. Fotedar. 2021. Black Soldier Fly, Hermetia illucens as an Alternative to Fishmeal Protein and Fish Oil: Impact on Growth, Immune Response, Mucosal Barrier Status, and Flesh Quality of Juvenile Barramundi, Lates calcarifer (Bloch, 1790). https://doi.org/10.3390/biology10060505
  • Y.X. Li, L. Bruni, A. Jaramillo-Torres, K. Gajardo, T.M. Kortner, A. Krogdahl. 2021. Differential response of digesta- and mucosa-associated intestinal microbiota to dietary insect meal during the seawater phase of Atlantic salmon. https://doi.org/10.1186/s42523-020-00071-3
  • M. Oteri, A.R. Di Rosa, V. Lo Presti, F. Giarratana, G. Toscano, B. Chiofalo. 2021. Black Soldier Fly Larvae Meal as Alternative to Fish Meal for Aquaculture Feed. https://doi.org/10.3390/su13105447
  • S. Barbi, L.I. Macavei, A. Caligiani, L. Maistrello, M. Montorsi. 2021. From Food Processing Leftovers to Bioplastic: A Design of Experiments Approach in a Circular Economy Perspective. https://doi.org/10.1007/s12649-021-01376-3
  • S.H. Do, E.A. Koutsos, P.L. Utterback, C.M. Parsons, M.R.C. de Godoy, K.S. Swanson. 2021. Amino acid digestibility and digestible indispensable amino acid score-like values of black soldier fly larvae fed different forms and concentrations of calcium using the precision-fed cecectomized rooster assay. https://doi.org/10.1093/jas/skab124
  • D. Murawska, T. Daszkiewicz, W. Sobotka, M. Gesek, D. Witkowska, P. Matusevicius, T. Bakula. 2021. Partial and Total Replacement of Soybean Meal with Full-Fat Black Soldier Fly (Hermetia illucens L.) Larvae Meal in Broiler Chicken Diets: Impact on Growth Performance, Carcass Quality and Meat Quality. https://doi.org/10.3390/ani11092715
  • G.X. Wang, K. Peng, J.R. Hu, W.Y. Mo, Z.H. Wei, Y.H. Huang. 2021. Evaluation of defatted Hermetia illucens larvae meal for Litopenaeus vannamei: effects on growth performance, nutrition retention, antioxidant and immune response, digestive enzyme activity and hepatic morphology. https://doi.org/10.1111/anu.13240
  • A. Singh, B.H. Srikanth, K. Kumari. 2021. Determining the Black Soldier fly larvae performance for plant-based food waste reduction and the effect on Biomass yield. https://doi.org/10.1016/j.wasman.2021.05.028
  • H. Mohamed, E. Marusich, Y. Afanasev, S. Leonov. 2021. Fatty Acids-Enriched Fractions of Hermetia illucens (Black Soldier Fly) Larvae Fat Can Combat MDR Pathogenic Fish Bacteria Aeromonas spp. https://doi.org/10.3390/ijms22168829
  • N.S. Liland, P. Araujo, X.X. Xu, E.J. Lock, G. Radhakrishnan, A.J.P. Prabhu, I. Belghit. 2021. A meta-analysis on the nutritional value of insects in aquafeeds. https://doi.org/10.3920/JIFF2020.0147
  • C. Lalander, E. Ermolaev, V. Wiklicky, B. Vinneras. 2021. Process efficiency and ventilation requirement in black soldier fly larvae composting of substrates with high water content. https://doi.org/10.1016/j.scitotenv.2020.144422
  • J.S. Matos, L.P. de Araujo, I.B. Allaman, I.P. Lobo, S.T. de Oliva, T.M. Tavares, J.A. de Almeida Neto. 2021. Evaluation of the reduction of methane emission in swine and bovine manure treated with black soldier fly larvae (Hermetia illucens L.). https://doi.org/10.1007/s10661-021-09252-2
  • A. Saviane, L. Tassoni, D. Naviglio, D. Lupi, S. Savoldelli, G. Bianchi, G. Cortellino, P. Bondioli, L. Folegatti, M. Casartelli, V.T. Orlandi, G. Tettamanti, S. Cappellozza. 2021. Mechanical Processing of Hermetia illucens Larvae and Bombyx mori Pupae Produces Oils with Antimicrobial Activity. https://doi.org/10.3390/ani11030783
  • C. Lalander, S. Diener, C. Zurbrugg, B. Vinneras. 2021. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). https://doi.org/10.1016/j.jclepro.2020.125527
  • C. Caimi, I. Biasato, G. Chemello, S.B. Oddon, C. Lussiana, V.M. Malfatto, M.T. Capucchio, E. Colombino, A. Schiavone, F. Gai, A. Trocino, A. Brugiapaglia, M. Renna, L. Gasco. 2021. Dietary inclusion of a partially defatted black soldier fly (Hermetia illucens) larva meal in low fishmeal-based diets for rainbow trout (Oncorhynchus mykiss). https://doi.org/10.1186/s40104-021-00575-1
  • S. Moutinho, R. Pedrosa, R. Magalhaes, A. Oliva-Teles, G. Parisi, H. Peres. 2021. Black soldier fly (Hermetia illucens) pre-pupae larvae meal in diets for European seabass (Dicentrarchus labrax) juveniles: Effects on liver oxidative status and fillet quality traits during shelf-life. https://doi.org/10.1016/j.aquaculture.2020.736080
  • Y. Husein, L. Bruni, G. Secci, C. Taiti, I. Belghit, E.J. Lock, G. Parisi. 2021. Does sous-vide cooking preserve the chemical and volatile composition of Atlantic salmon (Salmo salar L.) fed Hermetia illucens larvae meal? https://doi.org/10.3920/JIFF2020.0002
  • T. Eriksson, C.J. Picard. 2021. Genetic and genomic selection in insects as food and feed. https://doi.org/10.3920/JIFF2020.0097
  • L. Bruni, G. Secci, Y. Husein, F. Faccenda, A.C.L. de Medeiros, G. Parisi. 2021. Is it possible to cut down fishmeal and soybean meal use in aquafeed limiting the negative effects on rainbow trout (Oncorhynchus mykiss) fillet quality and consumer acceptance? https://doi.org/10.1016/j.aquaculture.2021.736996
  • M.R. Chaklader, J. Howieson, R. Fotedar. 2021. Growth, hepatic health, mucosal barrier status and immunity of juvenile barramundi, Lates calcarifer fed poultry by-product meal supplemented with full-fat or defatted Hermetia illucens larval meal. https://doi.org/10.1016/j.aquaculture.2021.737026
  • V.V. Mshayisa, J. Van Wyk. 2021. Hermetia illucens Protein Conjugated with Glucose via Maillard Reaction: Antioxidant and Techno-Functional Properties. https://doi.org/10.1155/2021/5572554
  • A. Osimani, I. Ferrocino, M.R. Corvaglia, A. Roncolini, V. Milanovic, C. Garofalo, L. Aquilanti, P. Riolo, S. Ruschioni, E. Jamshidi, N. Isidoro, M. Zarantoniello, L. Cocolin, I. Olivotto, F. Clementi. 2021. Microbial dynamics in rearing trials of Hermetia illucens larvae fed coffee silverskin and microalgae. https://doi.org/10.1016/j.foodres.2020.110028
  • J.B. Zhang, Y.Q. Yu, J.K. Tomberlin, M.M. Cai, L.Y. Zheng, Z.N. Yu. 2021. Organic side streams: using microbes to make substrates more fit for mass producing insects for use as feed. https://doi.org/10.3920/JIFF2020.0078
  • M. Zarantoniello, B. Randazzo, V. Nozzi, C. Truzzi, E. Giorgini, G. Cardinaletti, L. Freddi, S. Ratti, F. Girolametti, A. Osimani, V. Notarstefano, V. Milanovic, P. Riolo, N. Isidoro, F. Tulli, G. Gioacchini, I. Olivotto. 2021. Physiological responses of Siberian sturgeon (Acipenser baerii) juveniles fed on full-fat insect-based diet in an aquaponic system. https://doi.org/10.1038/s41598-020-80379-x
  • L.Y. Dong, M.M. Tomassen, R.M.C. Ariens, E. Oosterink, H.J. Wichers, T. Veldkamp, J.J. Mes, C. Govers. 2021. Clostridioides difficile toxin A-mediated Caco-2 cell barrier damage was attenuated by insect-derived fractions and corresponded to increased gene transcription of cell junctional and proliferation proteins. https://doi.org/10.1039/d1fo00673h
  • D. Ddiba, K. Andersson, A. Rosemarin, H. Schulte-Herbruggen, S. Dickin. 2021. The circular economy potential of urban organic waste streams in low- and middle-income countries. https://doi.org/10.1007/s10668-021-01487-w
  • H.Q. Tran, H.V. Doan, V. Stejskal. 2021. Environmental consequences of using insect meal as an ingredient in aquafeeds: A systematic view. https://doi.org/10.1111/raq.12595
  • M.N. Wachira, I.M. Osuga, J.M. Munguti, M.K. Ambula, S. Subramanian, C.M. Tanga. 2021. Efficiency and Improved Profitability of Insect-Based Aquafeeds for Farming Nile Tilapia Fish (Oreochromis niloticus L.). https://doi.org/10.3390/ani11092599
  • G. Bosch, K.S. Swanson. 2021. Effect of using insects as feed on animals: pet dogs and cats. https://doi.org/10.3920/JIFF2020.0084
  • Y.B. Lin, J.J. Rong, X.F. Wei, Z.X. Sui, J.H. Xiao, D.W. Huang. 2021. Proteomics and ultrastructural analysis of Hermetia illucens (Diptera: Stratiomyidae) larval peritrophic matrix. https://doi.org/10.1186/s12953-021-00175-x
  • M. Chavez, M. Uchanski. 2021. Insect left-over substrate as plant fertiliser. https://doi.org/10.3920/JIFF2020.0063
  • R. Spykman, S.M. Hossaini, D.A. Peguero, A. Green, V. Heinz, S. Smetana. 2021. A modular environmental and economic assessment applied to the production of Hermetia illucens larvae as a protein source for food and feed. https://doi.org/10.1007/s11367-021-01986-y
  • D. Fabrikov, E. Morote, J. Montes, M.J. Sanchez-Muros, F.G. Barroso, M. Rodriguez-Rodriguez, M.J. Gonzalez-Fernandez, J.L. Guil-Guerrero. 2021. Facing the challenge of discarded fish: improving nutritional quality of two insect species larvae for use as feed and food. https://doi.org/10.3920/JIFF2020.0019
  • P.S. Agbohessou, S.N.M. Mandiki, A. Gougbedji, R.C. Megido, M.S. Hossain, P. De Jaeger, Y. Larondelle, F. Francis, P.A. Laleye, P. Kestemont. 2021. Total replacement of fish meal by enriched-fatty acid Hermetia illucens meal did not substantially affect growth parameters or innate immune status and improved whole body biochemical quality of Nile tilapia juveniles. https://doi.org/10.1111/anu.13232
  • L. Bruni, Y. Husein, G. Secci, F. Tulli, G. Parisi. 2021. Rainbow Trout (Oncorhynchus mykiss) Skin as Potential n-3 Fatty Acid Source. https://doi.org/10.1007/s12649-021-01384-3
  • M.S. Al-saggaf. 2021. Formulation of Insect Chitosan Stabilized Silver Nanoparticles with Propolis Extract as Potent Antimicrobial and Wound Healing Composites. https://doi.org/10.1155/2021/5578032
  • H.Q. Tran, M. Prokesova, M. Zare, T. Gebauer, A.C. Elia, E. Colombino, I. Ferrocino, C. Caimi, F. Gai, L. Gasco, V. Stejskal. 2021. How Does Pikeperch Sander lucioperca Respond to Dietary Insect Meal Hermetia illucens? Investigation on Gut Microbiota, Histomorphology, and Antioxidant Biomarkers. https://doi.org/10.3389/fmars.2021.680942
  • T. Grenda, K. Kwiatek, M. Goldsztejn, M. Sapala, N. Koziel, P. Domaradzki. 2021. Clostridia in Insect Processed Animal Proteins-Is an Epidemiological Problem Possible? https://doi.org/10.3390/agriculture11030270
  • I. Belghit, M. Varunjikar, M.C. Lecrenier, A. Steinhilber, A. Niedzwiecka, Y.V. Wang, M. Dieu, D. Azzollini, K. Lie, E.J. Lock, M.H.G. Berntssen, P. Renard, J. Zagon, O. Fumiere, J.J.A. van Loon, T. Larsen, O. Poetz, A. Braeuning, M. Palmblad, J.D. Rasinger. 2021. Future feed control – Tracing banned bovine material in insect meal. https://doi.org/10.1016/j.foodcont.2021.108183
  • M. Kokdener, F. Kiper. 2021. Effects of Larval Population Density and Food Type on the Life Cycle of Musca domestica (Diptera: Muscidae). https://doi.org/10.1093/ee/nvaa165
  • I.C. de Jong, X.E. Blaauw, J.A.J. van der Eijk, C.S. da Silva, M.M. van Krimpen, R. Molenaar, H. van den Brand. 2021. Providing environmental enrichments affects activity and performance, but not leg health in fast- and slower-growing broiler chickens. https://doi.org/10.1016/j.applanim.2021.105375
  • N.J. Parry, C.W. Weldon. 2021. Nutritional content and bioconversion efficiency of Hermetia illucens (Diptera: Stratiomyidae): harvest as larvae or prepupae? https://doi.org/10.1111/aen.12571
  • K. Ospina-Granobles, N. Carrejo-Gironza. 2021. Efficiency of Bioconversion of Coffee Pulp using Hermetia illucens (Diptera: Stratiomyidae) Larvae. https://doi.org/10.47836/pjtas.44.1.14
  • S.Y. Leong, S.R.M. Kutty, M.J.K. Bashir, Q.L. Li. 2021. A Circular Economy Framework based on Organic Wastes Upcycling for Biodiesel Production from Hermetia illucens. https://doi.org/10.4186/ej.2021.25.2.223
  • S.S. Santos, M.B. dos Santos, A.D. Barreto, E.S. Prazeres, A.P. Lobo, R.M. de Jesus, I.P. Lobo. 2021. Protein and Lauric Oil Production from Agricultural Waste Bioconversion by Hermetia Illucens Larvae. https://doi.org/10.21577/1984-6835.20210028
  • J.N. del Hierro, E. Cantero-Bahillo, T. Fornari, D. Martin. 2021. Effect of Defatting and Extraction Solvent on the Antioxidant and Pancreatic Lipase Inhibitory Activities of Extracts from Hermetia illucens and Tenebrio molitor. https://doi.org/10.3390/insects12090789
  • F. Boukid, J. Riudavets, L. del Arco, M. Castellari. 2021. Impact of Diets Including Agro-Industrial By-Products on the Fatty Acid and Sterol Profiles of Larvae Biomass from Ephestia kuehniella, Tenebrio molitor and Hermetia illucens. https://doi.org/10.3390/insects12080672
  • S. Huang, Q.X. Ma, Q. Hou, T. Zuo, Z.J. Zhang, W.Z. Ni. 2021. Identification and quantitative chemical analysis of betaines in different organic wastes and their bioconversion composts. https://doi.org/10.1016/j.biortech.2021.124857
  • J. Jankowski, K. Kozlowski, Z. Zdunczyk, A. Stepniowska, K. Ognik, B. Kieronczyk, D. Jozefiak, J. Juskiewicz. 2021. The effect of dietary full-fat Hermetia illucens larvae meal on gut physiology and growth performance in young turkeys. https://doi.org/10.1016/j.anifeedsci.2021.114879
  • A.A. Amer, E.M. El-Nabawy, A.H. Gouda, M.A.O. Dawood. 2021. The addition of insect meal from Spodoptera littoralis in the diets of Nile tilapia and its effect on growth rates, digestive enzyme activity and health status. https://doi.org/10.1111/are.15434
  • C.M. Mudalungu, C.M. Tanga, S. Kelemu, B. Torto. 2021. An Overview of Antimicrobial Compounds from African Edible Insects and Their Associated Microbiota. 2021. https://doi.org/10.3390/antibiotics10060621
  • K. Hartinger, J. Greinix, N. Thaler, M.A. Ebbing, N. Yacoubi, K. Schedle, M. Gierus. 2021. Effect of Graded Substitution of Soybean Meal by Hermetia illucens Larvae Meal on Animal Performance, Apparent Ileal Digestibility, Gut Histology and Microbial Metabolites of Broilers. https://doi.org/10.3390/ani11061628
  • A. Sultana, H.R. Luo, S. Ramakrishna. 2021. Harvesting of Antimicrobial Peptides from Insect (Hermetia illucens) and Its Applications in the Food Packaging. https://doi.org/10.3390/app11156991
  • R. Galecki, L. Zielonka, M. Zasepa, J. Golebiowska, T. Bakula. 2021. Potential Utilization of Edible Insects as an Alternative Source of Protein in Animal Diets in Poland. https://doi.org/10.3389/fsufs.2021.675796
  • D. Vandeweyer, J. De Smet, N. Van Looveren, L. Van Campenhout. 2021. Biological contaminants in insects as food and feed. https://doi.org/10.3920/JIFF2020.0060
  • K.J. Hawkey, C. Lopez-Viso, J.M. Brameld, T. Parr, A.M. Salter. Edited by H.A. Lewin, R.M. Roberts. 2021. Insects: A Potential Source of Protein and Other Nutrients for Feed and Food. https://doi.org/10.1146/annurev-animal-021419-083930
  • M.R. Chaklader, J. Howieson, R. Fotedar, M.A.B. Siddik. 2021. Supplementation of Hermetia illucens Larvae in Poultry By-Product Meal-Based Barramundi, Lates calcarifer Diets Improves Adipocyte Cell Size, Skin Barrier Functions, and Immune Responses. https://doi.org/10.3389/fnut.2020.613158
  • A.J. Hernandez-Alvarez, M. Mondor, I.A. Pina-Dominguez, O.A. Sanchez-Velazquez, G.M. Lalanne. 2021. Drying technologies for edible insects and their derived ingredients. https://doi.org/10.1080/07373937.2021.1915796
  • L. Gasco, A. Jozefiak, M. Henry. 2021. Beyond the protein concept: health aspects of using edible insects on animals. https://doi.org/10.3920/JIFF2020.0077
  • D.G.A.B. Oonincx, M.D. Finke. 2021. Nutritional value of insects and ways to manipulate their composition. https://doi.org/10.3920/JIFF2020.0050
  • D. Rovai, M. Ortgies, S. Amin, S. Kuwahara, G. Schwartz, R. Lesniauskas, J. Garza, A. Lammert. Utilization of Carrot Pomace to Grow Mealworm Larvae (Tenebrio molitor). https://doi.org/10.3390/su13169341
  • Y.J. Son, I.K. Hwang, C.W. Nho, S.M. Kim, S.H. Kim. 2021. Determination of Carbohydrate Composition in Mealworm (Tenebrio molitor L.) Larvae and Characterization of Mealworm Chitin and Chitosan. https://doi.org/10.3390/foods10030640
  • H. Sun, O.N. Velazco, C. Lakemond, M. Dekker, L. Cadesky, M. Mishyna. 2021. Differences in moisture sorption characteristics and browning of lesser mealworm (Alphitobius diaperinus) ingredients. https://doi.org/10.1016/j.lwt.2021.110989
  • Y. Lou, Y.R. Li, B.Y. Lu, Q. Liu, S.S. Yang, B.F. Liu, N.Q. Ren, W.M. Wu, D.F. Xing. 2021. Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation. https://doi.org/10.1016/j.jhazmat.2021.126222
  • O. Stastnik, J. Novotny, A. Roztocilova, P. Kouril, V. Kumbar, J. Cernik, L. Kalhotka, L. Pavlata, L. Lacina, E. Mrkvicova. 2021. Safety of Mealworm Meal in Layer Diets and their Influence on Gut Morphology. https://doi.org/10.3390/ani11051439
  • H. Sen Siow, K. Sudesh, P. Murugan, S. Ganesan. 2021. Mealworm (Tenebrio molitor) oil characterization and optimization of the free fatty acid pretreatment. https://doi.org/10.1016/j.fuel.2021.120905
  • S.Y. Cho, G.H. Ryu. 2021. Effects of mealworm larva composition and selected process parameters on the physicochemical properties of extruded meat analog. https://doi.org/10.1002/fsn3.2414
  • J.H. Kim, E.Y. Kim, K.J. Chung, J.H. Lee, H.J. Choi, T.W. Chung, K.J. Kim. 2021. Mealworm Oil (MWO) Enhances Wound Healing Potential through the Activation of Fibroblast and Endothelial Cells. https://doi.org/10.3390/molecules26040779
  • N. Matin, P. Utterback, C.M. Parsons. 2021. True metabolizable energy and amino acid digestibility in black soldier fly larvae meals, cricket meal, and mealworms using a precision-fed rooster assay. https://doi.org/10.1016/j.psj.2021.101146
  • B.Y. Peng, Z.B. Chen, J.B. Chen, X.F. Zhou, W.M. Wu, Y.L. Zhang. 2021. Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: A sustainable approach for waste management. https://doi.org/10.1016/j.jhazmat.2021.125803
  • D. Turck, J. Castenmiller, S. De Henauw, K.I. Hirsch-Ernst, J. Kearney, A. Maciuk, I. Mangelsdorf, H.J. McArdle, A. Naska, C. Pelaez, K. Pentieva, A. Siani, F. Thies, S. Tsabouri, M. Vinceti, F. Cubadda, T. Frenzel, M. Heinonen, R. Marchelli, M. Neuhauser-Berthold, M. Poulsen, M.P. Maradona, J.R. Schlatter, H. van Loveren, E. Ververis, H.K. Knutsen. 2021. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. https://doi.org/10.2903/j.efsa.2021.6343
  • S. Mattioli, G. Paci, F. Fratini, A. Dal Bosco, T. Tuccinardi, S. Mancini. 2021. Former foodstuff in mealworm farming: Effects on fatty acids profile, lipid metabolism and antioxidant molecules. https://doi.org/10.1016/j.lwt.2021.111644
  • D. Kowalska, J. Strychalski, A. Gugolek. 2021. The effect of silkworm pupae and mealworm larvae meals as dietary protein components on performance indicators in rabbits. https://doi.org/10.22319/rmcp.v12i1.5455
  • Y. Mazlum, F. Turan, Y.B. Yildirim. 2021. Evaluation of mealworms (Tenebrio molitor) meal as an alternative protein source for narrow-clawed crayfish (Pontastacus leptodactylus) juveniles. https://doi.org/10.1111/are.15253
  • D. Houben, G. Daoulas, A.M. Dulaurent. 2021. Assessment of the Short-Term Fertilizer Potential of Mealworm Frass Using a Pot Experiment. https://doi.org/10.3389/fsufs.2021.714596
  • B. Tobolkova, P. Takac, B. Mangova, M. Kozanek. 2021. A comparative study of colour characteristics of thermally/non-thermally treated mealworm larvae (Tenebrio molitor) by means of UV /Vis spectroscopy and multivariate analysis. https://doi.org/10.1007/s11694-021-00957-z
  • A.R. Shaviklo, A.H. Alizadeh-Ghamsari, S.A. Hosseini. 2021. Sensory attributes and meat quality of broiler chickens fed with mealworm (Tenebrio molitor). https://doi.org/10.1007/s13197-020-04946-w
  • L. Hoffmann, M. Rawski, S. Nogales-Merida, P. Kolodziejski, E. Pruszynska-Oszmalek, J. Mazurkiewicz. 2021. Mealworm meal use in sea trout (Salmo trutta m. trutta, L.) fingerling diets: effects on growth performance, histomorphology of the gastrointestinal tract and blood parameters. https://doi.org/10.1111/anu.13293
  • D. Turck, T. Bohn, J. Castenmiller, S. De Henauw, K.I. Hirsch-Ernst, A. Maciuk, I. Mangelsdorf, H.J. McArdle, A. Naska, C. Pelaez, K. Pentieva, A. Siani, F. Thies, S. Tsabouri, M. Vinceti, F. Cubadda, T. Frenzel, M. Heinonen, R. Marchelli, M. Neuhauser-Berthold, M. Poulsen, M.P. Maradona, J.R. Schlatter, H. van Loveren, E. Ververis, H.K. Knutsen. 2021. Safety of frozen and dried formulations from whole yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. https://doi.org/10.2903/j.efsa.2021.6778
  • M. Dreyer, S. Hortenhuber, W. Zollitsch, H. Jager, L.M. Schaden, A. Gronauer, I. Kral. 2021. Environmental life cycle assessment of yellow mealworm (Tenebrio molitor) production for human consumption in Austria – a comparison of mealworm and broiler as protein source. https://doi.org/10.1007/s11367-021-01980-4
  • L. Selaledi, M. Mabelebele. 2021. The Influence of Drying Methods on the Chemical Composition and Body Color of Yellow Mealworm (Tenebrio molitor L.). https://doi.org/10.3390/insects12040333
  • R. Moruzzo, F. Riccioli, S.E. Diaz, C. Secci, G. Poli, S. Mancini. 2021. Mealworm (Tenebrio molitor): Potential and Challenges to Promote Circular Economy. https://doi.org/10.3390/ani11092568
  • B.P. Bajuk, P. Zrimsek, T. Kotnik, A. Leonardi, I. Krizaj, B.J. Strajn. 2021. Insect Protein-Based Diet as Potential Risk of Allergy in Dogs. https://doi.org/10.3390/ani11071942
  • H. Derler, A. Lienhard, S. Berner, M. Grasser, A. Posch, R. Rehorska. 2021. Use Them for What They Are Good at: Mealworms in Circular Food Systems. https://doi.org/10.3390/insects12010040
  • Q.Z. Ding, R.A. Wu, T.T. Shi, Y.H. Yu, Y.L. Yan, N.Z. Sun, A.R. Sheikh, L. Luo, R.H. He, H.L. Ma. 2021. Antiproliferative effects of mealworm larvae (Tenebrio molitor) aqueous extract on human colorectal adenocarcinoma (Caco-2) and hepatocellular carcinoma (HepG2) cancer cell lines. https://doi.org/10.1111/jfbc.13778
  • M.E. Van der Heide, J.V. Norgaard, R.M. Engberg. 2021. Performance, nutrient digestibility and selected gut health parameters of broilers fed with black soldier fly, lesser mealworm and yellow mealworm. https://doi.org/10.3920/JIFF2020.0150
  • E.D. Tsochatzis, I.E. Berggreen, J.V. Norgaard, G. Theodoridis, T.K. Dalsgaard. 2021. Biodegradation of expanded polystyrene by mealworm larvae under different feeding strategies evaluated by metabolic profiling using GC-TOF-MS. https://doi.org/10.1016/j.chemosphere.2021.130840
  • K. Kotsou, C.I. Rumbos, G.V. Baliota, M. Gourgouta, C.G. Athanassiou. 2021. Influence of Temperature, Relative Humidity and Protein Content on the Growth and Development of Larvae of the Lesser Mealworm, Alphitobius diaperinus (Panzer). https://doi.org/10.3390/su131911087
  • J. Strychalski, J. Juskiewicz, D. Kowalska, A. Gugolek. 2021. Performance indicators and gastrointestinal response of rabbits to dietary soybean meal replacement with silkworm pupae and mealworm larvae meals. https://doi.org/0.1080/1745039X.2021.1962171
  • Z. Khodaparast, C.A.M. van Gestel, A.G. Papadiamantis, S.F. Goncalves, I. Lynch, S. Loureiro. 2021. Toxicokinetics of silver nanoparticles in the mealworm Tenebrio molitor exposed via soil or food. https://doi.org/10.1016/j.scitotenv.2021.146071
  • M.L. Vommaro, J. Kurtz, A. Giglio. 2021. Morphological Characterisation of Haemocytes in the Mealworm Beetle Tenebrio molitor (Coleoptera, Tenebrionidae). https://doi.org/10.3390/insects12050423
  • Lamberti, S. Nebbia, S. Cirrincione, L. Brussino, V. Giorgis, A. Romito, C. Marchese, M. Manfredi, E. Marengo, M.G. Giuffrida, G. Rolla, L. Cavallarin. 2021. Thermal processing of insect allergens and IgE cross-recognition in Italian patients allergic to shrimp, house dust mite and mealworm. https://doi.org/10.1016/j.foodres.2021.110567
  • S. Mancini, S. Mattioli, S. Paolucci, F. Fratini, A. Dal Bosco, T. Tuccinardi, G. Paci. 2021. Effect of Cooking Techniques on the in vitro Protein Digestibility, Fatty Acid Profile, and Oxidative Status of Mealworms (Tenebrio molitor). https://doi.org/10.3389/fvets.2021.675572
  • S.M. Jeong, S. Khosravi, K.Y. Yoon, K.W. Kim, B.J. Lee, S.W. Hur, S.M. Lee. 2021. Mealworm, Tenebrio molitor, as a feed ingredient for juvenile olive flounder, Paralichthys olivaceus. https://doi.org/10.1016/j.aqrep.2021.100747
  • B. Cabuk. 2021. Influence of grasshopper (Locusta Migratoria) and mealworm (Tenebrio Molitor) powders on the quality characteristics of protein rich muffins: nutritional, physicochemical, textural and sensory aspects. https://doi.org/10.1007/s11694-021-00967-x
  • D. Deruytter, C.L. Coudron, J. Claeys. 2021. The influence of wet feed distribution on the density, growth rate and growth variability of Tenebrio molitor. https://doi.org/10.3920/JIFF2020.0049
  • S. Baek, K. Son, H.D. Lee, D.S. Choi, C.J. Kim, H.H. Noh. 2021. Effective and rugged analysis of glyphosate, glufosinate, and metabolites in Tenebrio molitor larva (mealworms) using liquid chromatography tandem mass spectrometry. https://doi.org/10.1038/s41598-021-96529-8
  • A.M. Brandon, A.M. Garcia, N.A. Khlystov, W.M. Wu, C.S. Criddle. 2021. Enhanced Bioavailability and Microbial Biodegradation of Polystyrene in an Enrichment Derived from the Gut Microbiome of Tenebrio molitor (Mealworm Larvae). https://doi.org/10.1021/acs.est.0c04952
  • A. Mendoza-Salazar, L. Santiago-Lopez, M.J. Torres-Llanez, A. Hernandez-Mendoza, B. Vallejo-Cordoba, A.M. Liceaga, A.F. Gonzalez-Cordova. 2021. In Vitro Antioxidant and Antihypertensive Activity of Edible Insects Flours (Mealworm and Grasshopper) Fermented with Lactococcus lactis Strains. https://doi.org/10.3390/fermentation7030153
  • S.S. Yang, M.Q. Ding, Z.R. Zhang, J. Ding, S.W. Bai, G.L. Cao, L. Zhao, J.W. Pang, D.F. Xing, N.Q. Ren, W.M. Wu. 2021. Confirmation of biodegradation of low-density polyethylene in dark- versus yellow- mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. https://doi.org/10.1016/j.scitotenv.2021.147915
  • L. Shafique, H.M.R. Abdel-Latif, Faiz-ul Hassan, M. Alagawany, M.A.E. Naiel, M.A.O. Dawood, S. Yilmaz, Q.Y. Liu. 2021. The Feasibility of Using Yellow Mealworms (Tenebrio molitor): Towards a Sustainable Aquafeed Industry. https://doi.org/10.3390/ani11030811
  • F. Coutinho, C. Castro, I. Guerreiro, F. Rangel, A. Couto, C.R. Serra, H. Peres, P. Pousao-Ferreira, M. Rawski, A. Oliva-Teles, P. Enes. 2021. Mealworm larvae meal in diets for meagre juveniles: Growth, nutrient digestibility and digestive enzymes activity. https://doi.org/10.1016/j.aquaculture.2021.736362
  • J.R. Ham, R.Y. Choi, Y. Lee, M.K. Lee. 2021. Effects of Edible Insect Tenebrio molitor Larva Fermentation Extract as a Substitute Protein on Hepatosteatogenesis and Proteomic Changes in Obese Mice Induced by High-Fat Diet. https://doi.org/10.3390/ijms22073615
  • S.K.E. Gan, S.X. Phua, J.Y. Yeo, Z.S.L. Heng, Z.X. Xing. 2021. Method for Zero-Waste Circular Economy Using Worms for Plastic Agriculture: Augmenting Polystyrene Consumption and Plant Growth. https://doi.org/10.3390/mps4020043
  • M.M.I. Mollah, Y. Kim. 2021. HMGB1-like dorsal switch protein 1 of the mealworm, Tenebrio molitor, acts as a damage-associated molecular pattern. https://doi.org/10.1002/arch.21795
  • N.S. Johnsen, J.L. Andersen, J. Offenberg. 2021. The effect of relative humidity on the survival and growth rate of the yellow mealworm larvae (Tenebrio molitor, Linnaeus 1758). https://doi.org/10.3920/JIFF2020.0068
  • C. Rios, R.L. Panini, L.A.A. Menezes, F.N. Vieira, D.M. Fracalossi, R.I. Samuels, J.D. Lindner, C.P. Silva. 2021. Effects of the substitution of fishmeal with mealworm meal on enzymes, haemolymph and intestinal microbiota of the Pacific white shrimp. https://doi.org/10.3920/JIFF2020.0148
  • S. Sedgh-Gooya, M. Torki, M. Darbemamieh, H. Khamisabadi, A. Abdolmohamadi. 2021. Effect of dietary inclusion of yellow mealworm (Tenebrio molitor) larvae meal on productive performance, egg quality indices and blood parameters of laying hens. https://doi.org/10.1071/AN20102
  • M.C. Boukouvala, D. Romano, N.G. Kavallieratos, C. Stefanini, A. Canale, G. Benelli. 2021. Behavioral Asymmetries Affecting Male Mating Success in Tenebrio molitor (Coleoptera: Tenebrionidae), an Important Edible Species. https://doi.org/10.1093/jee/toaa285
  • E. Zielinska, D. Zielinski, A. Jakubczyk, M. Karas, U. Pankiewicz, B. Flasz, M. Dziewiecka, S. Lewicki. 2021. The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytotoxicity, and oxidative stress parameters. https://doi.org/10.1016/j.foodchem.2020.128846
  • L.B. Silva, R.G. de Souza, S.R. da Silva, A.D. Feitosa, E.C. Lopes, S.B.P. Lima, L.R.B. Dourado, B.E. Pavan. 2021. Development of Tenebrio molitor (Coleoptera: Tenebrionidae) on Poultry Litter-Based Diets: Effect on Chemical Composition of Larvae. https://doi.org/10.1093/jisesa/ieaa145
  • E. Zielinska, U. Pankiewicz, M. Sujka. 2021. Nutritional, Physiochemical, and Biological Value of Muffins Enriched with Edible Insects Flour. https://doi.org/10.3390/antiox10071122
  • W.J.H. Hermans, J.M. Senden, T.A. Churchward-Venne, K.J.M. Paulussen, C.J. Fuchs, J.S.J. Smeets, J.J.A. van Loon, L.B. Verdijk, L.J.C. van Loon. 2021. Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. https://doi.org/10.1093/ajcn/nqab115
  • Z. Volek, A. Adamkova, L. Zita, M. Adamek, V. Plachy, J. Mlcek, M. Marounek. The effects of the dietary replacement of soybean meal with yellow mealworm larvae (Tenebrio molitor) on the growth, nutrient digestibility and nitrogen output of fattening rabbits. https://doi.org/10.1016/j.anifeedsci.2021.115048
  • B. Bolat, A.E. Ugur, M.H. Oztop, H. Alpas. 2021. Effects of High Hydrostatic Pressure assisted degreasing on the technological properties of insect powders obtained from Acheta domesticus & Tenebrio molitor. https://doi.org/10.1016/j.jfoodeng.2020.110359
  • S.T. Sagu, E. Landgraber, I.M. Henkel, G. Huschek, T. Homann, S. Bussler, O.K. Schluter, H. Rawel. 2021. Effect of Cereal alpha-Amylase/Trypsin Inhibitors on Developmental Characteristics and Abundance of Digestive Enzymes of Mealworm Larvae (Tenebrio molitor L.). https://doi.org/10.3390/insects12050454
  • M.C. Roy, Y. Kim. 2021. Eicosanoid-induced calcium signaling mediates cellular immune responses of Tenebrio molitor. https://doi.org/10.1111/eea.13037
  • A.T.S. Fialho, A.S. Silva, C.O. Brito, P.A.C.B. Vale, C.J.P. Oliveira, V. Ribeiro. 2021. Nutritional composition of larvae of mealworm (Tenebrio molitor L.) and crickets (Gryllus assimilis) with potential usage in feed. https://doi.org/10.1590/1678-4162-12158
  • A. Urbanski, N. Konopinska, J. Lubawy, K. Walkowiak-Nowicka, P. Marciniak, J. Rolff. 2021. A possible role of tachykinin-related peptide on an immune system activity of mealworm beetle, Tenebrio molitor L. https://doi.org/10.1016/j.dci.2021.104065
  • A. Barre, C. Pichereaux, M. Simplicien, O. Burlet-Schiltz, H. Benoist, P. Rouge. 2021. A Proteomic- and Bioinformatic-Based Identification of Specific Allergens from Edible Insects: Probes for Future Detection as Food Ingredients. https://doi.org/10.3390/foods10020280
  • A.C.D. Rocha, C.J. Andrade, D. de Oliveira. 2021. Perspective on integrated biorefinery for valorization of biomass from the edible insect Tenebrio molitor. https://doi.org/10.1016/j.tifs.2021.07.012
  • A. Tzachor, C.E. Richards, L. Holt. 2021. Future foods for risk-resilient diets. https://doi.org/10.1038/s43016-021-00269-x
  • V. Milanovi, F. Cardinali, L. Belleggia, C. Garofalo, M. Pasquini, S. Tavoletti, P. Riolo, S. Ruschioni, N. Isidoro, A. Osimani, L. Aquilanti. 2021. Exploitation of Tenebrio molitor larvae as biological factories for human probiotics, an exploratory study. https://doi.org/10.1016/j.jff.2021.104490
  • M. Gumussoy, C. Macmillan, S. Bryant, D.F. Hunt, P.J. Rogers. 2021. Desire to eat and intake of ‘insect’ containing food is increased by a written passage: The potential role of familiarity in the amelioration of novel food disgust. https://doi.org/10.1016/j.appet.2020.105088
  • V.H.B. Ferreira, A. Simoni, K. Germain, C. Leterrier, L. Lansade, A. Collin, S. Mignon-Grasteau, E. Le Bihan-Duval, E. Guettier, H. Leruste, L. Calandreau, V. Guesdon. 2021. Working for food is related to range use in free-range broiler chickens. https://doi.org/10.1038/s41598-021-85867-2
  • M. Skotnicka, K. Karwowska, F. Klobukowski, A. Borkowska, M. Pieszko. 2021. Possibilities of the Development of Edible Insect-Based Foods in Europe. https://doi.org/10.3390/foods10040766
  • A. Lecocq, M.E. Natsopoulou, I.E. Berggreen, J. Eilenberg, L.H.L. Heckmann, H.V. Nielsen, C.R. Stensvold, A.B. Jensen. 2021. Probiotic properties of an indigenous Pediococcus pentosaceus strain on Tenebrio molitor larval growth and survival. https://doi.org/10.3920/JIFF2020.0156
  • A. Ait-Kaki, J.L. Hornick, S. El Otmani, Y. Chebli, N. Moula. 2021. Effect of Dried Mealworms (Tenebrio molitor), Larvae and Olive Leaves (Olea europaea L.) on Growth Performance, Carcass Yield and Some Blood Parameters of Japanese Quail (Coturnix coturnix japonica). https://doi.org/10.3390/ani11061631
  • X. Yu, Q. He, D. Wang. 2021. Dynamic Analysis of Major Components in the Different Developmental Stages of Tenebrio molitor. https://doi.org/10.3389/fnut.2021.689746
  • P. Sangiorgio, A. Verardi, S. Dimatteo, A. Spagnoletta, S. Moliterni, S. Errico. 2021. Tenebrio molitorin the circular economy: a novel approach for plastic valorisation and PHA biological recovery. https://doi.org/10.1007/s11356-021-15944-6
  • M. Percipalle, A. Salvaggio, G.M. Pitari, R.P. Giunta, A. Aparo, T. Alfonzetti, A.M.F. Marino. 2021. Edible Insects and Toxoplasma gondii: Is It Something We Need To Be Concerned About? https://doi.org/10.4315/JFP-20-239
  • M. Van Peer, L. Frooninckx, C. Coudron, S. Berrens, C. Alvarez, D. Deruytter, G. Verheyen, S. Van Miert. 2021. Valorisation Potential of Using Organic Side Streams as Feed for Tenebrio molitor, Acheta domesticus and Locusta migratoria. https://doi.org/10.3390/insects12090796
  • G. Chemello, I. Biasato, F. Gai, M.T. Capucchio, E. Colombino, A. Schiavone, L. Gasco, A. Pauciullo. 2021. Effects of Tenebrio molitor larvae meal inclusion in rainbow trout feed: myogenesis-related gene expression and histomorphological features. https://doi.org/10.1080/1828051X.2021.1945959
  • A. Basto, J. Calduch-Giner, B. Oliveira, L. Petit, T. Sá, M.R.G. Maia, S. 2021. The Use of Defatted Tenebrio molitor Larvae Meal as a Main Protein Source Is Supported in European Sea Bass (Dicentrarchus labrax) by Data on Growth Performance, Lipid Metabolism, and Flesh Quality. https://doi.org/10.3389/fphys.2021.659567
  • G. Gaudioso, G. Marzorati, F. Faccenda, T. Weil, F. Lunelli, G. Cardinaletti, G. Marino, I. Olivotto, G. Parisi, E. Tibaldi, K.M. Tuohy, F. Fava. 2021. Processed Animal Proteins from Insect and Poultry By‐Products in a Fish Meal‐Free Diet for Rainbow Trout: Impact on Intestinal Microbiota and Inflammatory Markers. https://doi.org/10.3390/ijms22115454
  • X. Liu, X. Liu, Y. Yao, X. Qu, J. Chen, K. Xie, X. Wang, Y. Qi, B. Xiao, C. He. 2021. Effects of different levels of Hermetiaillucens larvae meal on performance, egg quality, yolk fatty acid composition and oxidative status of laying hens. https://doi.org/10.1080/1828051X.2021.1878946
  • C.I. Rumbos, D.G.A.B. Oonincx, I.T. Karapanagiotidis, M. Vrontaki, M. Gourgouta, A. Asimaki, E. Mente, C.G. Athanassiou. 2021. Agricultural by-products from Greece as feed for yellow mealworm larvae:circular economy at a local level. https://doi.org/10.3920/JIFF2021.0044
  • B. Hoc, F. Francis, J. Carpentier, L. Mostade, C. Blecker, G. Purcaro, R. Caparros Megido. 2021. ω3-enrichment of Hermetia illucens (L. 1758) prepupae from oilseed byproducts. https://doi.org/10.1016/j.jssas.2021.01.001
  • S.U. Choi, I.H. Choi, T.H. Chung. 2021. Investigation of breast meat traits of broilers fed different amounts of Hermetia illucens and Protaetia brevitarsis seulensis powder. https://doi.org/10.1111/1748-5967.12504
  • N.A. Ushakova, A.E. Dontsov, M.V Marsova, A.I. Bastrakov. 2021. Antioxidant Properties of an Extract of Hermetia illucens Larvae. https://doi.org/10.1134/S1062359021020138
  • B. Georgescu, D. Struti, T. Papuc, V. Cighi, A. Boaru. 2021. Effect of the energy content of diets on the development and quality of the fat reserves of larvae and reproduction of adults of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). https://doi.org/10.14411/eje.2021.030
  • J. Poveda. 2021. Insect frass in the development of sustainable agriculture. A review. https://doi.org/10.1007/s13593-020-00656-x
  • C.I. Rumbos, D. Bliamplias, M. Gourgouta, V. Michail, C.G. Athanassiou. 2021. Rearing Tenebrio molitor and Alphitobius diaperinus Larvae on Seed Cleaning Process Byproducts. https://doi.org/10.3390/insects12040293
  • A. Dion-Poulin, M. Turcotte, S. Lee-Blouin, V. Perreault, V. Provencher, A. Doyen, S.L. Turgeon. 2021. Acceptability of insect ingredients by innovative student chefs: An exploratory study. https://doi.org/10.1016/j.ijgfs.2021.100362
  • F. Cargnelutti, A.R. Ramirez, S. Cristancho, I.A. Sandoval-Garcia, M. Rocha-Ortega, L. Calbacho-Rosa, F. Palacino, A. Cordoba-Aguilar. 2021. Condition-dependent male copulatory courtship and its benefits for females. https://doi.org/10.1002/ece3.7815
  • R. Gaglio, M. Barbera, L. Tesoriere, A. Osimani, G. Busetta, M. Matraxia, A. Attanzio, I. Restivo, L. Aquilanti, L. Settanni. 2021. Sourdough “ciabatta” bread enriched with powdered insects: Physicochemical, microbiological, and simulated intestinal digesta functional properties. https://doi.org/10.1016/j.ifset.2021.102755
  • J.C. Ribeiro, B. Sousa-Pinto, J. Fonseca, S.C. Fonseca, L.M. Cunha. 2021. Edible insects and food safety: allergy. https://doi.org/10.3920/JIFF2020.0065
  • M. Pietras, S. Orczewska-Dudek, W. Szczurek, M. Pieszka. 2021. Effect of dietary lupine seeds (Lupinus luteus L.) and different insect larvae meals as protein sources in broiler chicken diet on growth performance, carcass, and meat quality. https://doi.org/10.1016/j.livsci.2021.104537
  • X.C. Han, M. Heinonen. 2021. Development of ultra-high performance liquid chromatographic and fluorescent method for the analysis of insect chitin. https://doi.org/10.1016/j.foodchem.2020.127577
  • T. Lucchese-Cheung, L.A.K. de Aguiar, E.E. Spers, L.M. De Lima. 2021. The Brazilians’ sensorial perceptions for novel food – cookies with insect protein. https://doi.org/10.3920/JIFF2020.0080
  • F. Rivero-Pino, A. Guadix, E.M. Guadix. 2021. Identification of novel dipeptidyl peptidase IV and alpha-glucosidase inhibitory peptides from Tenebrio molitor. https://doi.org/10.1039/d0fo02696d
  • K.L. Gutzkow, J. Ebmeyer, N. Kroncke, N. Kampschulte, L. Bohmert, C. Schone, N.H. Schebb, R. Benning, A. Braeuning, R. Maul. 2021. Metabolic fate and toxicity reduction of aflatoxin B1 after uptake by edible Tenebrio molitor larvae. https://doi.org/10.1016/j.fct.2021.112375
  • A. Gravel, A. Marciniak, M. Couture, A. Doyen. 2021. Effects of Hexane on Protein Profile, Solubility and Foaming Properties of Defatted Proteins Extracted from Tenebrio molitor Larvae. https://doi.org/10.3390/molecules26020351
  • D.A. Tzompa-Sosa, K. Dewettinck, X. Gellynck, J.J. Schouteten. 2021. Replacing vegetable oil by insect oil in food products: Effect of deodorization on the sensory evaluation. https://doi.org/10.1016/j.foodres.2021.110140
  • H.Q. Tran, H.V. Doan, V. Stejskal. 2021. Does dietary Tenebrio molitor affect swimming capacity, energy use, and physiological responses of European perch Perca fluviatilis? https://doi.org/10.1016/j.aquaculture.2021.736610
  • Y.H. Jo, J.H. Lee, B.B. Patnaik, M. Keshavarz, Y.S. Lee, Y.S. Han. 2021. Autophagy in Tenebrio molitor Immunity: Conserved Antimicrobial Functions in Insect Defenses. https://doi.org/10.3389/fimmu.2021.667664
  • A.M. Meyer, N. Meijer, E.F. Hoek-van den Hil, H.J. Van der Fels-Klerx. 2021. Chemical food safety hazards of insects reared for food and feed. https://doi.org/10.3920/JIFF2020.0085
  • J. Mlcek, A. Adamkova, M. Adamek, M. Borkovcova, M. Bednarova, L. Kourimska, V. Hlobilova. 2021. Selected aspects of edible insect rearing and consumption-A review. https://doi.org/10.17221/288/2020-CJFS
  • J.C. Sanchez-Hernandez. 2021. A toxicological perspective of plastic biodegradation by insect larvae. https://doi.org/10.1016/j.cbpc.2021.109117
  • M. Kurecka, M. Kulma, D. Petrickova, V. Plachy, L. Kourimska. 2021. Larvae and pupae of Alphitobius diaperinus as promising protein alternatives. https://doi.org/10.1007/s00217-021-03807-w
  • L. De Marchi, A. Wangorsch, G. Zoccatelli. 2021. Allergens from Edible Insects: Cross-reactivity and Effects of Processing. https://doi.org/10.1007/s11882-021-01012-z
  • B.A. Acosta-Estrada, A. Reyes, C.M. Rosell, D Rodrigo, C.C. Ibarra-Herrera. 2021. Benefits and Challenges in the Incorporation of Insects in Food Products. https://doi.org/10.3389/fnut.2021.687712
  • K. Niermans, A.M. Meyer, E.F. Hoek-van den Hil, J.J.A. van Loon, H.J. van der Fels-Klerx. 2021. A systematic literature review on the effects of mycotoxin exposure on insects and on mycotoxin accumulation and biotransformation. https://doi.org/10.1007/s12550-021-00441-z
  • Z. Cheng, L. Yu, H.H. Li, X.X. Xu, Z.B.A. Yang. 2021. Use of housefly (Musca domestica L.) larvae to bioconversion food waste for animal nutrition and organic fertilizer. https://doi.org/10.1007/s11356-021-14118-8
  • X.Y. Zhang, S.M. Wang, T. Li, Q. Zhang, R.L. Zhang, Z. Zhang. 2021. Bacteriophage: A Useful Tool for Studying Gut Bacteria Function of Housefly Larvae, Musca domestica. https://doi.org/10.1128/Spectrum.00599-21
  • H. Li, J. Li, Q. Wan, M.D. Wang, J.Y. Zhao, H. Li, W.W. Sun, B.L. Pan. 2021. Bioremediation mechanism of Monensin contaminated chicken manure by a combination of housefly larvae and Stenotrophomonas sp. DM-2. https://doi.org/10.1016/j.eti.2020.101269
  • J.O. Ogunji, S.C. Iheanacho, C.C. Mgbabu, N.C. Amaechi, O.O.C. Evulobi. 2021. Housefly Maggot Meal as a Potent Bioresource for Fish Feed to Facilitate Early Gonadal Development in Clarias gariepinus (Burchell,1822). https://doi.org/10.3390/su13020921
  • H. Ganda, E.T. Zannou, M. Kenis, H.A. Abihona, F.M. Houndonougbo, C.A.A.M. Chrysostome, D.C. Chougourou, G.A. Mensah. 2021. Effect of four rearing substrates on the yield and the chemical composition of housefly larvae, Musca domestica L. 1758 (Diptera: Muscidae). https://doi.org/10.1007/s42690-021-00651-z
  • S.D. Qi, B. Gao, S.Y. Zhu. 2021. Molecular Diversity and Evolution of Antimicrobial Peptides in Musca domestica. https://doi.org/10.3390/d13030107
  • H.J. Xu, C.L. Hong, Y.L. Yao, L.J. Liu, W.P. Wang, W.J. Zhu, L.D. Hong, J.Q. Weng, Y. Zhou, F.X. Zhu. 2021. The process of biotransformation can produce insect protein and promote the effective inactivation of heavy metals. https://doi.org/10.1016/j.scitotenv.2021.145864
  • C. Garino, J. Zagon, K. Nesic. 2021. Novel real-time PCR protocol for the detection of house cricket (Acheta domesticus) in feed. https://doi.org/10.1016/j.anifeedsci.2021.115057
  • L. De Marchi, F. Mainente, M. Leonardi, S. Scheurer, A. Wangorsch, V. Mahler, R. Pilolli, D. Sorio, G. Zoccatelli. 2021. Allergenicity assessment of the edible cricket Acheta domesticus in terms of thermal and gastrointestinal processing and IgE cross-reactivity with shrimp. https://doi.org/10.1016/j.foodchem.2021.129878
  • D. Turck, T. Bohn, J. Castenmiller, S. De Henauw, K.I. Hirsch-Ernst, A. Maciuk, I. Mangelsdorf, H.J. McArdle, A. Naska, C. Pelaez, K. Pentieva, A. Siani, F. Thies, S. Tsabouri, M. Vinceti, F. Cubadda, T. Frenzel, M. Heinonen, R. Marchelli, M. Neuhauser-Berthold, M. Poulsen, M.P. Maradona, J.R. Schlatter, H. van Loveren, T. Goumperis, H.K. Knutsen. 2021. Safety of frozen and dried formulations from whole house crickets (Acheta domesticus) as a Novel food pursuant to Regulation (EU) 2015/2283. https://doi.org/10.2903/j.efsa.2021.6779
  • C.A. Ngonga, C.O. Gor, E.A. Okuto, M.A. Ayieko. 2021. Growth performance of Acheta domesticus and Gryllus bimaculatus production reared under improvised cage system for increased returns and food security. https://doi.org/10.3920/JIFF2020.0082
  • J.R. de Miranda, F. Granberg, M. Low, P. Onorati, E. Semberg, A. Jansson, A. Berggren. 2021. Virus Diversity and Loads in Crickets Reared for Feed: Implications for Husbandry. https://doi.org/10.3389/fvets.2021.642085
  • H. Khatun, J. Claes, R. Smets, A. De Winne, M. Akhtaruzzaman, M. Van der Borght. 2021. Characterization of freeze-dried, oven-dried and blanched house crickets (Acheta domesticus) and Jamaican field crickets (Gryllus assimilis) by means of their physicochemical properties and volatile compounds. https://doi.org/10.1007/s00217-021-03709-x
  • M.C. Pina-Perez, D. Rodrigo, C. Ellert, M. Beyrer. 2021. Surface Micro Discharge-Cold Atmospheric Pressure Plasma Processing of Common House Cricket Acheta domesticus Powder: Antimicrobial Potential and Lipid-Quality Preservation. https://doi.org/10.3389/fbioe.2021.644177
  • M. Vaga, A. Berggren, A. Jansson. 2021. Growth, survival and development of house crickets (Acheta domesticus) fed flowering plants. https://doi.org/10.3920/JIFF2020.0048
  • L. Grispoldi, M. Karama, S. El-Ashram, C.M. Saraiva, J. Garcia-Diez, A. Chalias, S. Barbera, B.T. Cenci-Goga. 2021. Hygienic Characteristics and Detection of Antibiotic Resistance Genes in Crickets (Acheta domesticus) Breed for Flour Production. https://doi.org/10.3390/microbiolres12020034
  • P. Urbina, C. Marin, T. Sanz, D. Rodrigo, A. Martinez. 2021. Effect of HHP, Enzymes and Gelatin on Physicochemical Factors of Gels Made by Using Protein Isolated from Common Cricket (Acheta domesticus). https://doi.org/10.3390/foods10040858
  • S. Areerat, P. Chundang, C. Lekcharoensuk, A. Kovitvadhi. 2021. Possibility of Using House Cricket (Acheta domesticus) or Mulberry Silkworm (Bombyx mori) Pupae Meal to Replace Poultry Meal in Canine Diets Based on Health and Nutrient Digestibility. https://doi.org/10.3390/ani11092680
  • Y. Gutierrez, M. Fresch, S.L. Hellmann, T. Hankeln, C. Scherber, J. Brockmeyer. 2021. A multifactorial proteomics approach to sex-specific effects of diet composition and social environment in an omnivorous insect. https://doi.org/10.1002/ece3.7676
  • F.S. Bassett, M.L. Dunn, O.A. Pike, J.K. Jefferies. 2021. Physical, nutritional, and sensory properties of spray-dried and oven-roasted cricket (Acheta domesticus) powders. https://doi.org/10.3920/JIFF2020.0107
  • P.L. Kowalczewski, M. Gumienna, I. Rybicka, B. Gorna, P. Sarbak, K. Dziedzic, D. Kmiecik. 2021. Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder. https://doi.org/10.3390/molecules26041184
  • G.C. Luna, F. San Martin-Gonzalez, L.J. Mauer, A.M. Liceaga. 2021. Cricket (Acheta domesticus) protein hydrolysates’ impact on the physicochemical, structural and sensory properties of tortillas and tortilla chips. https://doi.org/10.3920/JIFF2020.0010
  • U. Bose, J.A. Broadbent, A. Juhasz, S. Karnaneedi, E.B. Johnston, S. Stockwell, K. Byrne, V. Limviphuvadh, S. Maurer-Stroh, A.L. Lopata, M.L. Colgrave. 2021. Protein extraction protocols for optimal proteome measurement and arginine kinase quantitation from cricket Acheta domesticus for food safety assessment. https://doi.org/10.1016/j.foodchem.2021.129110
  • H.H. Niyonsaba, J. Hohler, J. Kooistra, H.J. Van Der Fels-Klerx, M.P.M. Meuwissen. 2021. Profitability of insect farms. https://doi.org/10.3920/JIFF2020.0087
  • J. Ng’ang’a, S. Imathiu, F. Fombong, J. Vanden Broeck, J. Kinyuru. 2021. Effect of dietary supplementation with powder derived from Moringa oleifera and Azadirachta indica leaves on growth and microbial load of edible crickets. https://doi.org/10.3920/JIFF2020.0056
  • K. Smarzynski, P. Sarbak, P.L. Kowalczewski, M.B. Rozanska, I. Rybicka, K. Polanowska, M. Fedko, D. Kmiecik, L. Masewicz, M. Nowicki, J. Lewandowicz, P. Jezowski, M. Kacaniova, M. Slachcinski, T. Piechota, H.M. Baranowska. 2021. Low-Field NMR Study of Shortcake Biscuits with Cricket Powder, and Their Nutritional and Physical Characteristics. https://doi.org/10.3390/molecules26175417
  • K.M. Chipchase, A.M. Enders, E.G. Jacobs, M.R. Hughes, K.A. Killian. 2021. Effect of a single cold stress exposure on the reproductive behavior of male crickets. https://doi.org/10.1016/j.jinsphys.2021.104287
  • S. Homchan, Y.M. Gupta. 2021. Short Communication: Insect detection using a machine learning model. https://doi.org/10.13057/nusbiosci/n130110
  • E. Ahmed, N. Fukuma, M. Hanada, T. Nishida. 2021. Insects as Novel Ruminant Feed and a Potential Mitigation Strategy for Methane Emissions. https://doi.org/10.3390/ani11092648
  • G. Ssepuuya, F. Sengendo, C. Ndagire, J. Karungi, K.K.M. Fiaboe, J. Efitre, D. Nakimbugwe. 2021. Effect of alternative rearing substrates and temperature on growth and development of the cricket Modicogryllus conspersus (Schaum). https://doi.org/10.3920/JIFF2020.0014
  • A.D. Perera, R.C. Bhujel. 2021. Field cricket (Gryllus bimaculatus) meal (FCM) to replace fishmeal in the diets for sex reversal and nursing of Nile tilapia (Oreochromis niloticus) fry. https://doi.org/10.1111/are.15328
  • Y. Aguilera, I. Pastrana, M. Rebollo-Hernanz, V. Benitez, G. Alvarez-Rivera, J.L. Viejo, M.A. Martin-Cabrejas. 2021. Investigating edible insects as a sustainable food source: nutritional value and techno-functional and physiological properties. https://doi.org/10.1039/d0fo03291c
  • H.J.O. Magara, S. Niassy, M.A. Ayieko, M. Mukundamago, J.P. Egonyu, C.M. Tanga, E.K. Kimathi, J.O. Ongere, K.K.M. Fiaboe, S. Hugel, M.A. Orinda, N. Roos, S. Ekesi. 2021. Edible Crickets (Orthoptera) Around the World: Distribution, Nutritional Value, and Other Benefits-A Review. https://doi.org/I10.3389/fnut.2020.537915
  • J.H. Lee, T.K. Kim, C.H. Jeong, H.I. Yong, J.Y. Cha, B.K. Kim, Y.S. Choi. 2021. Biological activity and processing technologies of edible insects: a review. https://doi.org/10.1007/s10068-021-00942-8
  • S. Ojha, S. Bussler, M. Psarianos, G. Rossi, O.K. Schluter. 2021. Edible insect processing pathways and implementation of emerging technologies. https://doi.org/10.3920/JIFF2020.0121